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ABSTRACT
We establish the relationship between n-symplectic geometry on the

bundle of linear frames LM of an n-dimensional manifold M and canon-
ical symplectic geometry on the cotangent bundle T ∗M . We show that
all basic features of the canonical symplectic geometry of polynomial ob-
servables on T ∗M , including the momentum mapping associated with
Diff(M), are induced from the n-symplectic geometry on LM . Moreover,
the C× bundle L× over T ∗M associated with geometric quantization the-
ory is identified with a fiber bundle associated to the principal bundle
of affine frames AM of the manifold M . Viewing AM as a principal Rn

bundle over LM we show that the connection on L× used in geometric
quantization theory is induced from a canonical connection on AM that
is constructed from the Rn-valued n-symplectic potential. We then show
that the connection preserving vector fields on L× that are related to
linear polynomial observables on T ∗M are also induced from connection
preserving vector fields on AM .
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1. Introduction

The bundle of linear frames LM of an n-dimensional manifold M plays an es-
pecially important role in the theory of the differential geometry of the manifold
[1,2,3]. This is so since once the concepts of linear connection and exterior co-
variant differentiation with respect to a linear connection are defined on LM , one
may then use these ideas to induce connections and covariant differentiation on the
tensor bundles T r

sM over the manifold. The basic unifying element is the fact that
each tensor bundles T r

sM may be considered as a fiber bundle associated to LM
via the standard action of the structure group GL(n) of LM on T r

s Rn.
With this in mind one is led to ask if it is possible to trace other geometrical

structures on tensor bundles back to the bundle of linear frames LM . Consider in
particular the canonical symplectic structure on the cotangent bundle T ∗M that
is the basic building block of Hamiltonian dynamics when M is the configuration
space of a mechanical system. The canonical symplectic structure on T ∗M is dϑ
where ϑ is the canonical one-form that plays the role of a globally defined symplectic
potential. Since T ∗M may be considered as the associated bundle LM ×GL(n) Rn∗

one may ask if ϑ has its roots in a more basic structure on LM . The obvious
candidate for a generalized symplectic potential on LM is the Rn-valued soldering
one-form θ since the definitions of ϑ and θ are so similar. This observation led the
author to investigate whether or not one may use the vector-valued soldering one-
form θ as a generalized symplectic potential, and the basic features of the geometry
on LM that one may build up based on the generalized symplectic structure dθ may
be found in [4]. The generalized symplectic geometry based on the pair (LM, dθ)
will be referred to as n-symplectic geometry. The fact that dθ is Rn-valued
rather than R-valued introduces new and interesting features into the geometry.

More recently the exact relationship between the canonical one-form ϑ on T ∗M
and the soldering one-form θ on LM was provided by Sniatycki. He showed [5] that

ϑ[(u,α)](X̃) =< θu(X), α > . (1.1)

In this equation u = (m, e) denotes a point in LM that corresponds to the linear
frame e = (ei) at m ∈ M , and [(u, α)] denotes a point (equivalence class) in
T ∗M thought of as the associated bundle LM ×GL(n) Rn∗. In addition X̃ is a
tangent vector at [(u, α)] that projects to the same vector as does the tangent
vector X at (m, e), and the brackets denote that natural inner product of elements
of Rn and Rn∗. Thus the fundamental building block ϑ for canonical symplectic
geometry on T ∗M is induced from the soldering one-form θ on LM. This raises
the question: To what extend is the symplectic geometry on T ∗M induced from
the n-symplectic geometry on LM? The purpose of this paper is to provide some
answers to this question. What we will show is that the symplectic geometry of
polynomial observables on (T ∗M ,dϑ) is induced from n-symplectic geometry on
(LM, dθ). In addition the symplectic action of Diff(M) on T ∗M together with the
associated momentum mapping will be shown to be induced from an n-symplectic
action of Diff(M) on LM and an associated n-momentum mapping.

Since the subalgebra of polynomial observables on T ∗M plays a distinguished
role in the theory of geometric quantization [6,7] on T ∗M , the above results suggest
that the geometrical structures related to the C× bundle L× → T ∗M in geometric
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quantization theory might also be traceable back to LM . Indeed, we will show
that L× may be constructed as a fiber bundle associated to the bundle of affine
frames AM of M thought of as a principal Rn bundle over LM . Moreover, the
basic connection on L× used in geometric quantization theory will be shown to
be induced from a connection on AM → LM constructed from the n-symplectic
potential. The results presented here will thus provide a foundation for a geometric
quantization theory based on n-symplectic geometry.

The structure of the paper is as follows. In Section 2 we provide a survey of
the basics of n-symplectic geometry on the frame bundle LM of an n-dimensional
manifold M , and the symmetric T pRn-valued observables on LM are shown to
induce the homogeneous polynomial observables on T ∗M . Then in Section 3 we
develop the concept of momentum mappings in n-symplectic geometry. The natural
action on LM of the the group Diff(M) of diffeomorphisms of the base manifold
M is an n-symplectic action in the sense that it leaves dθ invariant. This action of
Diff(M) on LM is then shown to induce the standard symplectic action of Diff(M)
on (T ∗M,dϑ), and the associated n-symplectic momentum mapping is shown to
induce the standard momentum mapping on T ∗M associated with Diff(M).

In Section 4 we consider a basic problem for a geometric quantization theory
based on (LM, dθ). We use the n-symplectic potential θ to construct a canonical
connection σ on the Rn principal bundle AM → LM , and use the connection to
lift the Hamiltonian vector fields on LM of rank 1 observables associated with the
n-momentum mapping determined by Diff(M). We thereby obtain an isomorphism
of the Lie algebra of rank 1 observables on LM with a Lie algebra of connection pre-
serving vector fields on AM . This isomorphism provides the correct Dirac canonical
quantization rules for the n-symplectic momentum and position type variables.

In Section 5 we define a left action of the affine group A(n) = GL(n) n Rn on
Rn∗×C× and then show that the associated fiber bundle to AM →M determined
by this action may be identified with the trivial C× bundle π : L× → T ∗M used in
geometric quantization theory. Using a standard technique we then use the connec-
tion σ on AM → LM to induce a connection σ̃ on L×. This induced connection is
the connection π∗(ϑ) + 1

2πi
dz
z used in geometric quantization theory on T ∗M . We

show that the vector fields on L× that are used to construct the quantum operators
for the linear polynomial observables on T ∗M are induced from corresponding vec-
tor fields on AM → LM . We also show in Section 5 that the Hamiltonian vector
fields of symmetric tensorial observables on LM map to Hamiltonian vector fields
on T ∗M . Section 6 consists of a set of examples of specific n-symplectic momentum
mappings, and in Section 7 we present conclusions and a discussion of future work.

2. Survey of n-symplectic Geometry on LM

The principal fiber bundle π
LM

: LM −→M of linear frames of an n-dimensional
manifold M is the set of pairs (m, ei) where (ei) , i = 1, 2, . . . , n is a linear frame at
m ∈M . The dimension of LM is the even number n(n+ 1), and the general linear
group GL(n) acts on LM on the right by

(m, ei) · g = (m, eig
i
j) (2.1)
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for each g = (gi
j) ∈ GL(n). Let (xi) be a coordinate chart on U ⊂ M . Define

canonical coordinates (xi, πj
k) on Û = π−1

LM
(U) ⊂ LM by

xi(m, ei) = xi(m)

πj
k(m, ei) = ej(

∂

∂xk
)

(2.2)

where (ei) denotes the coframe dual to (ei). Moreover in (2.2) we follow standard
conventions and write xi in place of xi ◦ π

LM
.

Let (ri), i = 1, 2, . . . , n, denote the standard basis of Rn. Then the Rn-valued
soldering one-form θ = θiri on LM may be defined by

θ(Xu) = u−1(dπ
LM

(Xu)) , Xu ∈ TuLM (2.3)

where u = (m, ei) ∈ LM is viewed as the non-singular linear map u : Rn →
Tπ

LM
(u)M given by u(ξiri) = ξiei.

The theory of n-symplectic geometry on LM developed in [4] is based on gener-
alizing the basic structure equation

df = −Xf dϑ (2.4)

on T ∗M to (LM, dθ). In (2.4) f denotes any smooth R-valued function on T ∗M .
Since dθ is Rn-valued the range of the variables changes in n-symplectic geometry.
The simpliest generalization of (2.4) is

df̂ = −Xf̂ dθ (2.5)

where now f̂ is a smooth Rn-valued function on LM . We note that dθ is non-
degenerate in the sense that

X dθ = 0 ⇐⇒ X = 0 . (2.6)

Hence if a vector field Xf̂ satisfies (2.5) for a given Rn-valued function f̂ then
it will be unique. On the other hand the soldering one-form θ transformations
tensorially under right translations Rg for g ∈ GL(n) according to R∗gθ = g−1 · θ.
A consequence of this tensorial nature of θ is that not every Rn-valued function
on LM is compatible with equation (2.5). On the other hand all smooth R-valued
functions on T ∗M are compatible with equation (2.4).

Let T 1 denote the set of Rn-valued functions f̂ on LM that transform tensorially
under right translation by R∗g f̂ = g−1 · f̂ . Such functions are in one-one correspon-
dence with vector fields on M . Denote by HF 1 the set of Rn-valued functions on
LM that are compatible with (2.5). In [4] it is shown that

HF 1 = T 1 ⊕ C∞(M,Rn) (2.7)

where the second factor denotes the smooth Rn-valued functions on LM that are
invariant on fibers. For each f̂ ∈ HF 1 equation (2.5) assigns a unique Hamiltonian
vector field Xf̂ . The Poisson bracket of f̂ , ĝ ∈ HF 1 is defined by

{f̂ , ĝ} = Xf̂ (ĝ) , (2.8)
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andHF 1 is a Lie algebra under this bracket. Denote byHV 1 the set of Hamiltonian
vector fields Xf̂ determined by elements of HF 1. Then one shows that

[Xf̂ , Xĝ] = X{f̂ ,ĝ} (2.9)

so that HV 1 forms a Lie algebra.
From (2.5) it is clear that the constant Rn-valued functions in C∞(M,Rn) ⊂

HF 1 are all mapped to the zero vector field. Identifying these constant functions
with Rn we have that as Lie algebras

HV 1 = HF 1/Rn . (2.10)

Strictly speaking the bracket defined in (2.8) is not a Poisson bracket but simply
a Lie bracket. However the bracket becomes a true Poisson bracket when HF 1 is
combined with the higher rank observables. We denote the vector space of symmet-
ric ⊗p

sR
n-valued tensorial functions on LM by ST p = {f̂ : LM → ⊗p

sR
n|f̂(u · h) =

h−1 · f̂(u) ∀ h ∈ GL(n)}, where ⊗s denotes the symmetric tensor product, and
denote the vector space of symmetric rank p contravariant tensor fields on M by
SX p. An element of ST p corresponds to a unique element of SX p. We denote by
ST =

∑∞
p=1 ST

p the infinite dimensional vector space which is the direct sum of
the vector spaces ST p.

An element f̂ ∈ ST p determines [4] an equivalence classes [[Xf̂ ]] of (n+p−2
p−1 ) vector

fields [[Xf̂ ]]i1...ip−1 via the n-symplectic structure equation

df̂ i1...ip = −p!X(i1...ip−1

f̂
dθip) (2.11)

where round brackets on indices denotes symmetrization. We note that although
dθ is nondegenerate in the sense of (2.6), because of the symmetrization in (2.11)
the non-degeneracy is lost. For a given f̂ ∈ ST p equation (2.11) only determines
the vector fields Xi1...ip−1

f̂
up to addition of vector fields Y i1...ip−1 satisfying the

kernel equation
Y (i1...ip−1 dθip) = 0 . (2.12)

If a set of vector fields Y i1...ip−1 satisfies (2.12) then each vector field Y i1...ip−1

must be vertical. For a given f̂ ∈ ST p equation (2.11) thus determines an equiva-
lence class of ⊗p−1

s Rn-valued Hamiltonian vector fields ([[Xf̂ ]]i1...ip−1), where
two ⊗p−1

s Rn-valued vector fields are equivalent if their difference satisfies equation
(2.12).

An element f̂ = f̂ i1i2...ipri1 ⊗s ri2 · · · ⊗s rip
∈ ST p has the local canonical coor-

dinate representation

f̂ i1i2...ip = f j1j2...jp(x)πi1
j1
πi2

j2
· · ·πip

jp
. (2.13)

The associated equivalence classes of Hamiltonian vector fields [[Xf̂ ]]i1i2...ip−1 deter-
mined by equation (2.11) have the local coordinate representations [4]

Xf̂
i1i2...ip−1 =

1
(p− 1)!

f j1j2...jp−1k(x)πi1
j1
πi2

j2
· · ·πip−1

jp−1

∂

∂xk

− 1
p!

(
∂f j1j2...jp

∂xa
πi1

j1
πi2

j2
· · ·πip−1

jp−1
πb

jp
+ T i1i2...ip−1b

a

)
∂

∂πb
a

(2.14)
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where the components T i1i2...ip−1b
a must satisfy

T (i1i2...ip−1b)
a = 0 (2.15)

but are otherwise arbitrary.
The fact that one obtains equivalence classes of vector fields rather than vector

fields for the higher rank observables does not interfer with the basic algebraic
structures in n-symplectic geometry. For each p ≥ 1 the set of equivalence classes
of ⊗p−1

s Rn-valued vector fields on LM , with equivalence defined as above, forms
an infinite dimensional vector space. Denote by HV (ST p) the vector subspace
of ⊗p−1

s Rn-valued equivalence classes of vector fields determined by elements of
ST p by equation (2.11). For f̂ ∈ ST p and ĝ ∈ ST q define the Poisson bracket
{ , } : ST p × ST q → ST p+q−1 by

{f̂ , ĝ}
i1i2...ip+q−1

= p!Xf̂
(i1i2...ip−1

(
ĝipip+1...ip+q−1)

)
(2.16)

where Xf̂
i1i2...ip−1 is any representative of the equivalence class [[Xf̂ ]]i1i2...ip−1 . The

bracket so defined is easily shown to be independent of the choice of representa-
tives and has all the properties of a Poisson bracket. In particular the bracket
acts as a derivation on the commutative algebra (ST,⊗s). Moreover, when the
bracket defined here is reexpressed on the base manifold M , it gives [4] the differ-
ential concomitant of Schouten and Nijenhuis [8,9] of the symmetric tensor fields
corresponding to f̂ and ĝ. In summary we have:

Theorem 2.1 The space ST of symmetric tensorial functions on LM is a Poisson
algebra with respect to the Poisson bracket defined in (2.16).

It is convenient to introduce the multi-index notation ri1i2...ip−k
≡ ri1⊗sri2 · · ·⊗s

rip−k
for 0 ≤ k ≤ p−1. Let ˆ[[Xf̂ ]] = [[Xf̂ ]]i1i2...ip−1ri1i2...ip−1 and ˆ[[Xĝ]] = [[Xĝ]]

i1i2...iq−1ri1i2...iq−1

denote the vector valued equivalence classes of vector fields determined by f̂ ∈ ST p

and ĝ ∈ ST q. Define a bracket by

[ ˆ[[Xf̂ ]], ˆ[[Xĝ]]] = [[[Xf̂ ]]i1i2...ip−1 , [[Xĝ]]
ipip+1...ip+q−2 ]ri1i2...ip+q−2

= [Xf̂
i1i2...ip−1 , Xĝ

ipip+1...ip+q−2 ]ri1i2...ip+q−2

(2.17)

where the bracket on the right-hand-side is the ordinary Lie bracket of vector fields
calculated using arbitrary representatives. One shows that

[Xf̂
i1i2...ip−1 , Xĝ

ipip+1...ip+q−2 ]ri1i2...ip+q−2 ∈ [[X{f̂ ,ĝ}]] , (2.18)

and thus the bracket defined in (2.17) is well-defined, and we write

[ ˆ[[Xf̂ ]], ˆ[[Xĝ]]] = [[X̂{f̂ ,ĝ}]] . (2.19)

Moreover, the bracket defined in (2.17) is anti-symmetric. Denote the direct sum
of the vector spaces HV (ST p) by HV (ST ).
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Theorem 2.2 The vector space HV (ST ) of vector valued equivalence classes of
Hamiltonian vector fields on LM is a Lie algebra with respect to the bracket defined
in (2.17).

Formula (1.1) above shows that the canonical one-form on T ∗M is induced from
the soldering one-form on LM . We show here that the polynomial observables on
T ∗M are induced from related objects on LM . In particular elements of ST p induce
degree p homogeneous polynomial observable on T ∗M as follows. Consider T ∗M
as the associated bundle LM ×GL(n) Rn∗. Then for f̂ ∈ ST p define f̃ : T ∗M → R
by

f̃([u, αi]) =< f̂(u), αi1 , αi2 , . . . , αip
> (2.20)

where [u, αi] ∈ T ∗M , u = (m, ej) ∈ LM , and the brackets denote the extended
natural inner product of elements of Rn and Rn∗. The tensorial character of f̂
guarantees that this definition is independent of choice of representatives of the
equivalence class [u, α].

From (2.2) we note that πi
j(m, ek)αi = ei( ∂

∂xj )αi = pj(eiαi) where (pj) are the
standard momentum coordinates on T ∗M defined by the local chart (xi) on M .
Then, for example, for p=2 take f̂ = f̂ ijri ⊗s rj where f̂ ij = fab(x)πi

aπ
j
b . The

definition (2.20) yields
f̃([m, ej , αi] = fab(x)papb , (2.21)

which is a homogeneous quadratic polynomial observable on T ∗M . At the end of
Section 5 we show that the equivalence class of Hamiltonian vector fields [[Xf̂ ]] for
f̂ ∈ ST p may be mapped to the Hamiltonian vector field Xf̃ of f̃ on T ∗M , where
f̃ is induced from f̂ as in (2.20).

In general, it can be observed that n-symplectic geometry selects “allowable
observables” in the sense that not every ⊗p

sR
n-valued function on LM is compatible

with (2.11). It is known [4] that the most general ⊗p
sR

n-valued function on LM
that can satisfy (2.11) for some set of vector fields must be a polynomial in the
momentum coordinates with coefficients in the set of functions that are invariant
on fibers on LM. We denote this set by SHF p. For a given p ≥ 1 the homogeneous
degree p polynomials in SHF p form the set ST p, while for p > 2 the lower degree
polynomials do not in general correspond to elements of ST q for 0 ≤ q < p. The
reader is referred to [4] for more details.

3. n-symplectic Momentum Mappings

In the applications of symplectic geometry to classical and quantum mechan-
ics the concept of momentum mapping [10] plays an especially important role. In
classical mechanics it provides a geometrization of conservation laws associated
with Hamiltonian systems with symmetries, and in geometric quantization the mo-
mentum mapping on T ∗M associated with the action of Diff(M) is fundamentally
related to the geometrization of the Dirac canonical quantization procedure. Here
we introduce the concept of momentum mappings in n-symplectic geometry on
(LM, dθ). In the following an n-symplectic action of a Lie group G on LM is an
action that preserves the n-symplectic form dθ.
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DEF. #3.1: Let Φ : G× LM → LM be an n-symplectic action of a Lie group G
on the n-symplectic manifold (LM, dθ). Then a mapping J : LM → G∗ ⊗ Rn is a
momentum mapping if for each ξ ∈ G

dĴ(ξ) = −ξ∗ dθ (3.1)

where ξ∗ is the infinitesimal generator of the action of G on LM generated by ξ,
and Ĵ(ξ) : LM → Rn is defined by

Ĵ(ξ)(u) =< J(u), ξ > . (3.2)

The brackets in (3.2) denote the natural inner product of elements of G∗ and G.

This definition generalizes the definition of momentum mapping on a general
symplectic manifold, the main difference being that the range is now G∗ ⊗ Rn

rather than G∗.
To obtain a specific example of an n-symplectic momentum mapping we consider

the Lie group G = Diff(M) of diffeomorphisms of the base manifold M . The Lie
algebra G of Diff(M) is the set of smooth vector fields on M . Let Φ : G×M →M
denote the group action. This action lifts to a left action of G on LM in a natural
way [1]. For each f ∈ G the associated map Φf : M → M induces a mapping
Φ̃f : LM → LM defined by

Φ̃f (m, ei) = (Φf (m),Φf∗(ei)) . (3.3)

Then the action Φ̃ : G×LM → LM of G on LM is Φ̃(f, u) = Φ̃f (u) for u ∈ LM . It
is known ([1], page 226) that the soldering 1-form θ is invariant under this action.
Hence the action of Diff(M) on LM defined in (3.3) is an n-symplectic action.

Next consider a vector field X ∈ G. X generates a local 1-parameter group ϕt

of local diffeomorphisms of M which in turn lifts to a local 1-parameter group ϕ̃t

of local diffeomorphisms of LM . The infinitesimal generator X∗ of ϕ̃t is referred
to as the natural lift of X [1]. It follows from LX∗θ = 0 that

d(X∗ θ) = −X∗ dθ . (3.4)

Moreover since Rg∗(X∗) = X∗ it follows that X∗ θ ∈ T 1 ⊂ HF 1. Hence the
subset T 1 of rank 1 Hamiltonian functions HF 1 on LM is uniquely related to the
group Diff(M).

We can now exhibit a momentum mapping associated with the action of Diff(M)
on LM . For each vector field X ∈ G define Ĵ(X) : LM → Rn by

Ĵ(X) = X̂ (3.5)

where X̂ is the Rn-valued tensorial function in T 1 uniquely determined by X. In
particular X̂ = X∗ θ. As discussed above we know that

dĴ(X) = −X∗ dθ (3.6)
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so that (3.5) satisfies the definition of an n-symplectic momentum mapping. We
observe that the set of all Ĵ(X) for X ∈ G is thus the subset T 1 ⊂ HF 1 discussed
is Section 2.

Following Abraham and Marsden [10] we use the notation

Π(X) := Ĵ(X) (3.7)

and refer to Π(X) as the n-momentum corresponding to X. The value of the
n-momentum Π(X) at a linear frame u = (m, ei) is

Π(X)(u) = ei(X(π
LM

(u))ri (3.8)

which gives the Rn components of X with respect to the linear frame frame u =
(m, ei).

These ideas can be related to the standard notions on T ∗M associated with
Diff(M). We first show that one may use the n-symplectic action of Diff(M) on
LM to induce the standard symplectic action of Diff(M) on the symplectic mani-
fold (T ∗M,dϑ̂). We again consider the cotangent bundle as the associated bundle
LM ×GL(n) Rn∗ so that points in T ∗M are equivalence classes [(u, α)] for u ∈ LM
and α ∈ Rn∗. We use the n-symplectic action Φ̃ : Diff(M)× LM → LM to induce
a left action Φ̂ : Diff(M)× T ∗M → T ∗M by defining

Φ̂(f, [(u, α)]) = [Φ̃(f, u), α] . (3.9)

Because Φ̃ is a left action on LM it is easy to see that this definition is independent
of choice of representatives. Using the identification [(u, α)] −→ u(α) = (m, eiαi)
for u = (m, ei) one can show that this action on T ∗M is the standard symplectic
action associated with Diff(M) (see, for example, [10], page 283).

The n-symplectic momentum mapping discussed above can be used to induce the
momentum mapping on T ∗M associated with Diff(M) as follows. For each vector
field X on M define the map P (X) : T ∗M → R by

P (X)([u, α]) :=< Π(X)(u), α > (3.10)

where the brackets now denote the natural inner product of elements of Rn and
Rn∗. It is not difficult to show that P (X) defined here is the momentem of X as
defined on page 283 in [10]. Hence the symplectic action of Diff(M) on T ∗M and
the associated momentum mapping are induced from the n-symplectic action of
Diff(M) on LM and the n-symplectic momentum mapping defined in (3.5) above.

We provide the interpretation of conservations laws associated with n-symplectic
momentum mappings. First a preliminary Lemma. Let f̂ = f̂ iri ∈ T 1 and ĝ =
ĝijri⊗rj ∈ ST 2, let Xf̂ be the Hamiltonian vector field of f̂ , and let [[Xĝ]] = [[Xĝ]]

i
ri

be the equivalence class of Rn-valued Hamiltonian vector fields of ĝ.

LEMMA 3.1: If {ĝ, f̂} = 0 then for each i = 1, 2, . . . , n, f̂ i is constant on the
orbits of each Xĝ

i ∈ [[Xĝ]]
i .
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PROOF:

Let F i
t be the flow of Xĝ

i ∈ [[Xĝ]]
i. Then

d

dt
(f̂ i ◦ F i

t ) = (F i
t )
∗(LXĝ

i(f̂)
i
)

= (F i
t )
∗(Xĝ

i(f̂ i))

= (F i
t )
∗((

1
2
){ĝ, f̂}

ii
) .

(3.11)

This vanishes iff {f̂ , ĝ}
ii

= 0 which is true when {f̂ , ĝ} = 0. Moreover this is
true for each Xĝ

i ∈ [[Xĝ]]
i since the Poisson bracket is independent of choice of

representative.

We now consider the situation where ĝ ∈ ST 2 is a Hamiltonian tensor, and ĝ
is invariant under some Lie subgroup G of Diff(M) (See Section 6 for an explicit
example). The proof of the following theorem is given in the Appendix.

Theorem 3.1. Let Φ be an n-symplectic action of a subgroup G of Diff(M) on
(LM, dθ) with n-momentum mapping J . Suppose ĝ ∈ ST 2, ĝ : LM → Rn ⊗s Rn,
is invariant under the action, that is,

ĝ(Φh(u)) = ĝ(u) for all u ∈ LM , h ∈ G (3.12)

Then J provides n integrals of ĝ in the sense that

J i(F i
t (u)) = J i(u) (3.13)

where F i
t is the flow of any Xĝ

i ∈ [[Xĝ]]
i, i = 1, 2, . . . , n.

There is an obvious extension of these results to the case where ĝ ∈ ST p for
p ≥ 3.

4. Connections on β : AM −→ LM

In Section 2 we saw that the kernel of the map f̂ → Xf̂ for f̂ ∈ HF 1 is the set
of constant Rn-valued functions in the set C∞(M,Rn). Following the example [6]
of geometric quantization based on symplectic geometry on T ∗M we seek to lift
the set of Hamiltonian vector fields HV 1 to a Lie algebra of vector field H̃V 1 on a
bundle over LM in such a way that we obtain a Lie algebra isomorphism between
HF 1 and H̃V 1. We will show that the affine frame bundle of a manifold is an
appropriate bundle to accomplish this task.

Let AM denote the principal fiber bundle of affine frames [1,2,3] over an n-
dimensional manifold M. A point w ∈ AM is a triple (m, ei, v) where (ei) is a
linear frame at m ∈M and v is a tangent vector at m. The vector v is the “origin”
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of the affine frame. The semi-direct product affine group A(n) = GL(n) n Rn acts
on AM on the right by

(m, ei, v) · (g, ξ) = (m, eig
i
j , v + eiξ

i) (4.1)

for each (g, ξ) = ((gi
j), ξ

i) ∈ A(n).
There is a canonical embedding γ : LM → AM of LM into AM given by

γ(m, ei) = (m, ei, 0), and an associated canonical projection mapping β : AM →
LM given by β(m, ei, v) = (m, ei). The existence of the maps γ and β implies [1]
that AM is a trivial principal Rn bundle over LM .

In the following it will be convenient to have available the following canonical
coordinates on AM . Let (xi) be a coordinate chart on U ⊂M , and define canonical
coordinates (xi, πj

k) on Û = π−1(U) ⊂ LM as in (2.2). On Ũ = β−1(Û) ⊂ AM

define canonical coordinates (xi, πj
k, y

a) by

xi(m, ei, v) = xi(m)

πj
k(m, ei, v) = ej(

∂

∂xk
)

ya(m, ei, v) = ea(v) .

(4.2)

Note that the coordinates ya on AM are globally defined.
The bundles LM and AM support two invariantly defined forms. The Rn-valued

soldering one-form θ = θiri on LM was defined above in (2.3). In the canonical
coordinates (2.2) θ has the local coordinate representation

θ = (πi
jdx

j)ri . (4.3)

We introduce here the Rn-valued canonical zero-form λ = λiri on AM defined
by

λ(m, ei, v) = ei(v)ri . (4.4)

It is evident from (4.2) and (4.4) that λ has the local coordinate representation

λ = yiri . (4.5)

In the following we will need the particular connection on the principal Rn bundle
AM

β−→LM given in the following Lemma.

Lemma 4.1: The Rn-valued one-form σ = β∗θ+ dλ is a connection on the bundle
AM

β−→LM . The curvature Σ of σ is the Rn-valued two-form

Σ = dσ = β∗(dθ) . (4.6)

We will also need the fundamental vertical vector fields on AM . For each ξ = ξiri
in the Lie algebra Rn of the group Rn let ηξ denote the associated fundamental
vertical vector field on AM . The explicit coordinate representation for ηξ is

ηξ = ξi ∂

∂yi
. (4.7)
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Next suppose that f̂ = f̂ iri : LM → Rn. For each such function we define a vertical
vector field ηf̂ on AM by the formula

ηf̂ (w) = ηf̂(β(w))(w) = (f̂ i(β(w))
∂

∂yi
. (4.8)

Let X be a vector field on AM . Then X is horizontal with respect to the
connection σ iff σ(X) = 0. The local coordinate expression for such a horizontal
vector field is

X = Ai ∂

∂xi
+Bi

j

∂

∂πi
j

− πi
jA

j ∂

∂yi
. (4.9)

If X = Ai ∂
∂xi + Bi

j
∂

∂πi
j

is a vector field on LM then its horizontal lift X# to AM

with respect to σ is given by (4.9) where the components Ai and Bi
j are pull-ups

under β of functions defined on LM . Finally we recall that the vertical part of a
tangent vector X at w ∈ AM may be expressed as

ver(X) = ησ(X) ≡ η
(X σ)

. (4.10)

We now wish to characterize the vector fields on AM that preserve the connec-
tion one-form σ introduced above. The techniques used here follow those used by
Sniatycki [6]. Let ζ be a vector field on AM such that Lζσ = 0. Expanding this
equation we have

ζ dσ + d(ζ σ) = 0 . (4.11)

Evaluating this on the fundamental vertical vector field ηξ we find

ηξ(ζ σ) = 0 (4.12)

since the curvature dσ is horizontal. Hence the Rn-valued function ζ σ is con-
stant on fibers of AM so that we may express it as

ζ σ = f̂ ◦ β (4.13)

for some Rn-valued function f̂ on LM . From (4.10) and (4.13) we find that the
vertical component ver(ζ) is given by

ver(ζ) = ηf̂ . (4.14)

Using (4.13) and (4.14) back in (4.11) with ζ = ver(ζ) + hor(ζ) where hor(ζ)
denotes the horizontal part of ζ we find

d(f̂ ◦ β) = −hor(ζ) dσ

= −hor(ζ) β∗(dθ) .
(4.15)

Hence hor(ζ) is the horizontal lift Xf̂
# to AM of the vector field Xf̂ on LM

determined by the n-symplectic structure equation

df̂ = −Xf̂ dθ . (4.16)
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The result is the following. The set H̃V 1 of all vector fields ζ on AM that
preserve the connection σ is a Lie algebra under Lie bracket. If ζ ∈ H̃V 1 then

ζ = ζf̂ = Xf̂
# + ηf̂ (4.17)

for some Rn-valued function f̂ on LM , where Xf̂ is determined by (4.16). Now
equation (4.16) is the n-symplectic structure equation on (LM, dθ), and from the
general theory we know that the set of Rn-valued functions on LM that is compat-
ible with (4.16) is the subset HF 1 = T 1 ⊕C∞(M,Rn) of C∞(LM,Rn). Moreover,
by direct calculation one shows that [ζf̂ , ζĝ] = ζ{f̂ ,ĝ}.

Theorem 4.1. The set of vector fields on AM that preserve the connection σ is
composed of vector fields of the form (4.17) for f̂ ∈ HF 1. Moreover, the map

f̂ −→ ζf̂ (4.18)

for f̂ ∈ HF 1 defines a Lie algebra isomorphism between (HF 1, { , }) and (H̃V 1, [ , ]).

Finally we consider the locally defined position and momentum variables x̂i =
xiri (no sum on i) and π̂j = πk

j rk. From (2.14) with p = 1 we obtain the associated
Hamiltonian vector fields

Xx̂i = − ∂

∂πi
i

, Xπ̂j
=

∂

∂xj
. (4.19)

Using (2.8) we have {π̂i, x̂
j} = δj

i ri. Then using (4.19) together with (4.8) we find

ζx̂i = − ∂

∂πi
i

+ xi ∂

∂yi
, ζπ̂j

=
∂

∂xj
. (4.20)

Following [6] we define the associated prequantization operators by

Px̂i = −i~ζx̂i , Pπ̂j
= −i~ζπ̂j

. (4.21)

Defining the quantum commutator as the negative of the Lie bracket of vector fields,
[Pf̂ ,Pĝ]Q = −[Pf̂ ,Pĝ], we now find

[Pπ̂j ,Px̂i ]Q = i~P{π̂i,x̂j} , (4.22)

which are the quantum canonical commutation relations.

5. L× → T ∗M as a Fiber Bundle Associated to AM

Let C× denote the non-zero complex numbers c, and denote elements of Rn∗ by
α = (αj). Then it is straighforward to check that the mapping Φ : A(n)× (Rn∗ ×
C×) −→ Rn∗ × C× defined by

Φ((g, ξ), (α, c)) = ((g−1)i
jαi, c · exp(2πi(g−1)i

jξ
jαi) , ∀ (g, ξ) ∈ A(n) (5.1)
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is a left action. Using this left action we can define an associated bundle in the
standard way, namely

E := AM ×A(n) (Rn∗ × C×) . (5.2)

Points in this bundle, as a bundle over the base space M, are equivalence classes

[((m, ei, v), (αi, c))] (5.3)

with equivalence defined as follows:

((m, ei, v), (αi, c)) ∼ ((m, ei, v) · (h, ξ), (h, ξ)−1 · (αi, c)) (5.4)

for all (h, ξ) ∈ A(n). Working out the right-hand member using (5.1) we find

((m, ei, v), (αi, c)) ∼ ((m, eih
i
j , v + eiξ

i), (hi
jαi, c · exp(−2πiξaαa)) . (5.5)

Note that only the GL(n) ⊂ A(n) element (hi
j) acts on the Rn∗ factor, and that

only the Rn ⊂ A(n) element (ξi) acts on the C× factor. We can use this fact to
show that this bundle E can be viewed as a principal C× bundle over the cotangent
bundle.

Let L× = L×(T ∗M,C×) denote the trivial C× principal fiber bundle over the
cotangent bundle. Define a map ρ : E −→ L× as follows:

ρ([((m, ei, v), (αi, c))]) = ((m, eiαi), c · exp(2πiea(v)αa)) . (5.6)

The range is clearly correct and we need only check that the image of an equivalence
class is independent of choice of representative. Using (5.5) we find

ρ([(m,eih
i
j , v + eiξ

i), (hi
jαi, c · exp(−2πiξaαa)])

= ((m, ei(h−1)j
i (h

a
jαa)), c · exp(−2πiξaαa) · exp(2πi(h−1)j

ae
a(v + ebξ

b)hk
jαk))

= ((m, eiαi), c · exp(2πi[−ξaαa + ea(v + ekξ
k)αa]))

= ((m, eiαi), c · exp(2πi[−ξaαa + ea(v)αa + ξaαa)]))

= ((m, eiαi), c · exp(2πiea(v)αa)) .
(5.7)

Hence the map ρ is well-defined and the associated bundle E is bundle isomorphic
to the trivial C× principal bundle of T ∗M , and from now on we will consider E as
composed of pairs ((m, eiαi), c · exp(2πiea(v)αa)) and identify E with L×.

In the last section we saw that the connection σ = β∗(θ) + dλ on the principal
bundle β : AM → LM provides a Lie algebra of vector fields ζf̂ on AM that leave
σ invariant. This Lie algebra is isomorphic to the Lie algebra of rank 1 Hamiltonian
functions HF 1 on LM under the Poisson bracket { , }. This isomorphism is analo-
gous to the isomorphism of the Lie algebra of vector fields ζ̃f on L× that leave the
connection σ̃ = π∗(ϑ)+ 1

2πi
dz
z on L× fixed with the Lie algebra of smooth functions

on T ∗M under Poisson bracket. What we show here is that the connection σ̃ on
L× can be induced from the connection σ on AM. We will also obtain a mapping
of the subalgebra of vector fields ζf̂ on AM defined by elements f̂ ∈ HF 1 onto the
subalgebra of vector fields ζ̃f on L× for f a linear polynomial observable on T ∗M .
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Note first that there are just two orbits of GL(n) on Rn∗, namely {0} and Rn∗−
{0}. There is a natural projection AM×(Rn∗×C×) −→ E given by (u, (αi, c)) −→
u(αi, c) where u(αi, c) denotes the equivalence class (5.3) above. Fix a a non-zero
element α ∈ Rn∗ and an element c ∈ C× and define a map ψ(α,c) : AM −→ E ≡ L×

by
ψ(α,c)(u) = u((α, c)) . (5.8)

Since α 6= 0 the maps ψ(α,c), for c ∈ C×, map AM onto all of L× except for the
section S0 that contains the zero section of T ∗M . This section is a closed subset of
L×.

For each q ∈ L× define [1] the vertical subspace at q as the subspace of vectors
tangent to the C× fiber through q. We map the horizontal spaces Hu on AM to
horizontal spaces H̃q on L× as follows. For each q ∈ L×−S0 choose a u ∈ AM and
a pair (αi, c) ∈ Rn∗×C× with α 6= 0 such that ψ(α,c)(u) = q. Define the horizontal
space H̃q as the image of Hu under the map ψ(α,c), namely

H̃q = ψ(α,c)∗(Hu) . (5.9)

We calculate H̃q using local coordinates.
Hu is the set of all tangent vectors X at u ∈ AM such that σ(X) = 0,

and the local coordinate form of such vectors is given in (4.9) above. Let q =
[((m, ei, v), (αi, c))] = ((m, eiαi), c · exp(2πiea(v)αa)) using the identification (5.6)
above. On L× we use the local coordinates (xi, pj , z) defined by

xi(((m, eiαi), c · exp(2πiea(v)αa)) = xi(m) ,

pj(((m, eiαi), c · exp(2πiea(v)αa)) = eiαi(
∂

∂xj
) ,

z(((m, eiαi), c · exp(2πiea(v)αa)) = c · exp(2πiea(v)αa) .

(5.10)

For X ∈ Hu given in (4.9) write

X̃ = ψ(α,c)∗(X) = M i ∂

∂xi
+Ni

∂

∂pi
+Q

∂

∂z
. (5.11)

Evaluating (5.11) using (4.9) and (5.8) we find that Hq, for q not in S0, is composed
of vectors of the form

X̃ = Ai ∂

∂xi
+Bi

jαi
∂

∂pj
− 2πiAjpj(q)z(q)

∂

∂z
. (5.12)

Since α 6= 0 and the Bi
j are arbitrary, Bi

jαi may be considered as n arbitrary
constants which we denote by Bj . Hence Hq, for q not in S0, is composed of
vectors of the form

X̃ = Ai ∂

∂xi
+Bj

∂

∂pj
− 2πiAjpj(q)z(q)

∂

∂z
. (5.13)

LEMMA 5.1. The distribution H of subspaces Hq on L×−S0 defined by tangent
vectors of the form (5.13) is invariant under right translation by C× on L× − S0.
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PROOF: The Lemma follows easily upon noting that Rc1 ◦ ψ(α,c) = ψ(α,c1c).

It follows from (5.13) that H defines a complement to the vertical spaces at
points of L× − S0. Now if the distribution H defined above on L× − S0 were
defined on all of L× then it would define a connection. We will use H to define a
connection one-form on L× − S0 and then extend it to all of L× by continuity.

Thus let σ̃ be a one-form on L× that has the properties of a connection, namely
σ̃(c∗) = c and R∗c(σ̃) = σ̃. Here c∗ is the fundamental vertical vector field de-
termined by c ∈ C, where we consider C as the Lie algebra of C× under the
identification c −→ exp(2πic). Then c∗ is given by c∗ = 2πicz ∂

∂z . If σ̃ satisfies the
above two conditions it must be of the form

σ̃ = π∗(µ) +
1

2πi
dz

z
(5.14)

where µ is a real-valued one-form on T ∗M , and where π : L× → T ∗M is the
projection map. Expressing σ̃ in local coordinates (xi, pj , z) we have

σ̃ = Ridx
i + Sidpi +

1
2πi

dz

z
(5.15)

where Ri and Si are pull-ups of functions defined on T ∗M .
We now require σ̃ to also satisfy σ̃(X) = 0 on L× − S0 for X of the form given

in (5.13). We find Ri = pi and Si = 0, and thus our desired one-form on L× − S0

has the local coordinate form

σ̃ = pidx
i +

1
2πi

dz

z
(5.16)

The invariant form of σ̃ on L× − S0 is then

σ̃ = π∗(ϑ) +
1

2πi
dz

z
(5.17)

By continuity we can extend this one-form to all of L× so that (5.17) gives the
desired connection one-form. We have shown:

Theorem 5.1 The connection one-form defined on L× by the distribution H that
is induced by the horizontal distribution of the connection one-form σ = β∗(θ)+dλ
on β : AM → LM is σ̃ = π∗(ϑ) + 1

2πi
dz
z .

Consider the Lie algebra of vector fields ζf̂ on AM that satisfy Lζf̂
σ = 0. These

vector fields where characterized in Section 4 and are of the form ζf̂ = X#

f̂
+ ηf̂ for

f̂ ∈ HF 1 on LM , where Xf̂ is determined by the n-symplectic structure equation
on LM, and where

ηf̂ = f̂ i ◦ β ∂

∂yi
(5.18)

is a vertical vector field. It is clear that the vector fields ζf̂ have the same form as the
vector fields ζ̃f on L× provided f : T ∗M → R is a linear polynomial observable on
T ∗M . We know that the homogenous part of such observables are uniquely related
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to the momentum mapping defined by Diff(M), and that the homogeneous part of
f̂ on LM is also uniquely related to the n-momentum mapping on LM determined
by Diff(M). The question is whether or not the vector fields on L× can be obtained
from the vector fields on AM. First we consider the maps. Fixing the pair (α, c)
with α 6= 0 we consider the mapping ψ(α,c) : AM → L×. The following Lemma,
which characterizes the many-to-one nature of the mappings ψ(α,c), follows easily
from the definition (5.8).

LEMMA 5.2. The invariance group of the mapping ψ(α,c) : AM → L× for a fixed
pair (α, c) with α 6= 0 is the subgroup G(α,c) ⊂ A(n) defined by

G(α,c) = {(gi
j , w

k) | gi
jαi = αj , w

iαi = n = 0,±1,±2, . . . } (5.19)

We now consider the mapping of vectors ζf̂ on β : AM → LM to L× − S0.

We note first that the horizontal lift X#

f̂
on AM of a vector field Xf̂ on LM is

invariant under right translation: Rξ∗(X
#

f̂
) = X#

f̂
. Moreover, a vector field of the

form f̂ i ◦ β ∂
∂yi satisfies

Rξ∗(f̂ i ◦ β(u)
∂

∂yi
(u)) = f̂ i ◦ β(u)Rξ∗(

∂

∂yi
(u)) = f̂ i ◦ β(u · ξ)( ∂

∂yi
(u · ξ)) (5.20)

since the vertical basis vectors are themselves invariant under right translations by
elements ξ ∈ Rn. The vertical vector fields ηf̂ are thus invariant by right translation
on β : AM → LM . The result is that Rξ∗(ζf̂ ) = ζf̂ .

Now once again fix an element (α, c) ∈ Rn∗ × C× with α 6= 0. For each ζf̂ we
consider the set of vectors at points in L×(α,c) ⊂ L×−S0 determined by (α, c) defined
by

ψ(α,c)∗(ζf̂ ) . (5.21)

Since ψ(α,c) is C∞ (5.21) will define a smooth vector field on L×(α,c) provided the
many-to-one map ψ(α,c) defines unique vectors on L×(α,c).

Let u, ū be two points on a common fiber in AM with ū = R(I,ξ)(u) with (I, ξ) ∈
G(α,c). Then

ψ(α,c)(ū) = ψ(α,c) ◦R(I,ξ)(u) = ψ(α,c)(u) . (5.22)

Using Rξ∗(ζf̂ ) = ζf̂ and (5.22) one can show that

ψ(α,c)∗(ζf̂ (ū) = ψ(α,c)∗(ζf̂ (u)) (5.23)

when ū = R(I,ξ)(u) with (I, ξ) ∈ G(α,c). Hence each vector field ζf̂ does indeed
define a vector field on L×(α,c). Since we must use a different map ψ(α,c) for each c,
we need to check that we get unique tangent vectors as c varies. We will show, by
looking at the local coordinate formula for ψ(α,c)∗(ζf̂ ), that we get unique tangent
vectors and that they may be extended from the open submanifolds L×(α,c) to include
the closed subset S0.
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Now each ζf̂ has the form given in (4.1) above, and the image of the horizontal

part X#

f̂
has the form given in (5.12). We use (5.12) rather than (5.13) here because

we will rewrite the middle term when X has the special form of a ζf̂ . Using (5.18)
one shows that

ψ(α,c)∗(ηf̂ ) = 2πi(f̂ j ◦ ψ(α,c))αjz
∂

∂z
. (5.24)

Hence at points of L×(α,c) we have that :

ψ(α,c)∗(ζf̂ ) =
(
Ai ∂

∂xi
+Bi

jαi
∂

∂pj
− 2πiAjpj(q)z(q)

∂

∂z

)
+
(

2πi(f̂ j ◦ ψ(α,c))αjz
∂

∂z

)
.

(5.25)
There are two cases to consider.

Case I: f̂ ∈ T 1 ⊂ HF 1:

In this case f̂ and Xf̂ on LM (see (2.14)) and ζf̂ on AM are given in local
coordinates by

f̂ = f i(x)πj
i rj

Xf̂ = f i(x)
∂

∂xi
− ∂f i

∂xj
πk

i

∂

∂πk
j

ζf̂ = f i(x)
∂

∂xi
− ∂f i

∂xj
πk

i

∂

∂πk
j

(5.26)

Using these results in (5.25) we have for f̂ ∈ T 1:

ψ(α,c)∗(ζf̂ ) =(
f i(x)

∂

∂xi
− ∂fa

∂xj
πi

aαi
∂

∂pj
− 2πif j(x)pjz

∂

∂z

)
+
(

2πifk(x)πj
kαjz

∂

∂z

)
.

(5.27)
Since πj

k(m, ei)αj = pk(m, eiαi) the vertical components in this last equation cancel.
Moreover, the remaining parts are smooth on all of L× and are independent of choice
of c. Hence we have:

LEMMA 5.3. For f̂ ∈ T 1 ⊂ HF 1 the vector field ψ(α,c)∗(ζf̂ ) on L× determined
by ζf̂ on AM has the local coordinate form

ψ(α,c)∗(ζf̂ ) = f i(x)
∂

∂xi
− ∂fa

∂xj
pa

∂

∂pj
(5.28)

REMARK: This vector field is the vector field ζf on L× that one obtains from
Xf on T ∗M when f ∈ C∞(T ∗M,R) is the momentum P (~f) of a vector field
~f = f i(x) ∂

∂xi on M.

Case II: f̂ ∈ C∞(M,Rn).
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In this case f̂ and Xf̂ on LM (see (2.14)) and ζf̂ on AM are given in local
coordinates by

f̂ = f i(x)ri

Xf̂ = −∂f
i

∂xj

∂

∂πi
j

ζf̂ = −

(
∂f i

∂xj

∂

∂πi
j

)
+
(
f i(x)

∂

∂yi

) (5.29)

Using this result back in (5.25) we find

ψ(α,c)(ζf̂ ) =
(
−∂f

i

∂xj
αi

∂

∂pj

)
+
(

2πif jαjz
∂

∂z

)
. (5.30)

Now we recall that we have fixed α 6= 0. Hence f i(x)αi is, for each f̂ = f i(x)ri,
a real-valued function on L× that is constant on fibers. We introduce the notation

fα(x) = f i(x)αi (5.31)

for such functions. Then we may rewrite (5.30) as

ψ(α,c)(ζf̂ ) =
(
−∂fα

∂xj

∂

∂pj

)
+
(

2πifαz
∂

∂z

)
. (5.32)

This is smooth on all of L× and independent of choice of c. We have the result:

LEMMA 5.4. For f̂ ∈ C∞(M,Rn) ⊂ HF 1 the vector field ψ(α,c)∗(ζf̂ ) on L×

determined by a fixed non-zero α ∈ Rn∗ and ζf̂ on AM has the local coordinate
form

ψ(α,c)∗(ζf̂ ) =
(
−∂fα

∂xj

∂

∂pj

)
+
(

2πifαz
∂

∂z

)
(5.33)

where fα(x) = f i(x)αi.

REMARK: This vector field is the vector field ζf on L× that one obtains from
Xf on T ∗M when f ∈ C∞(T ∗M,R) is the function τ∗(f i(x)αi), where τ is the
projection τ : T ∗M →M .

Finally in this section we show that the equivalence class [[Xf̂ ]] of Hamiltonian
vector fields determined by f̂ ∈ ST p can be mapped to the Hamiltonian vector field
Xf̃ on T ∗M determined by f̃ : T ∗M → R, where f̃ is the homogeneous degree p
polynomial observable on T ∗M induced by f̂ as in (2.20). Consider T ∗M as the
associated bundle LM ×GL(n) Rn∗, and fix a non-zero α = (αi) ∈ Rn∗. Then define
the map ψα : LM → T ∗M − S̃0, where S̃0 is the zero section of T ∗M , by

ψα(u) = u(α) = [u, α] . (5.34)

This map, like the map ψ(α,c) discussed above, is a many-to-one map with ψα(u·h) =
ψα(u) for h ∈ Gα ⊂ GL(n) where Gα is the stability group of α.
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Theorem 5.2. Let f̂ ∈ ST p, let [[Xf̂ ]] be the associated equivalence class of Hamil-
tonian vector fields determined by (2.11), and let f̃ be the degree p homogeneous
polynomial observable on T ∗M determined by f̂ as in (2.20). Then

X = p!ψα∗(Xf̂
i1i2...ip−1αi1αi2 · · ·αip−1) , (5.35)

where Xf̂
i1i2...ip−1 denotes any set of representatives of [[Xf̂ ]], is a vector field on

T ∗M − S̃0, and X = Xf̃ .

The proof of this theorem is given in the appendix. The essential points to
notice are that (1) the arbitrariness in the definition of the Hamiltonian vector fields
cancels out under the mapping (5.35), and (2) the many-to-one map ψα determines a
vector field on T ∗M−S̃0 because of the tensorial nature of the explicitly determined
part of the Hamiltonian vector fields.

6. Examples of n-momentum Mappings.

(I): Linear Momentum

Let M = Rn , G = Rn, and let G act on M by translations:

Φ : G×M →M : (v,m) −→ v+m . (6.1)

The infinitesimal generator corresponding to ξ ∈ Rn is ξM (m) = ξi ∂
∂xi . By (3.5)-

(3.7) the n-momentum on LM associated with ξ is

Ĵ(ξ)(u) = Π(ξ)(u) = ξ̂(u) = ξiπj
i (u)rj (6.2)

and hence the n-momentum mapping is

J(u) = πj
i (u)r

i ⊗ rj , (6.3)

or simply
J = π̂i ⊗ ri = πj

i r
i ⊗ rj . (6.4)

Hence J(u) has an interpretation as a momentum frame rather than simply a
momentum. Note that from (6.3) with u = (m, ei) we have

J(u) = πj
i (u)r

i ⊗ rj

= ej(
∂

∂xi
)ri ⊗ rj c .

(6.5)

Thus the Rn∗ ⊗ Rn components J(u)j
i = ej( ∂

∂xi ) of J at u ∈ LM give the compo-
nents of the linear frame (ei) with respect to the coordinated linear frame ( ∂

∂xi ).

(II): Angular Momentum
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Let M = Rn and let G = SO(p, q). Let G act on M by:

Φ : G×M →M : (T,m) −→ Tm . (6.6)

The infinitesimal generator corresponding to B = Bi
jE

j
i ∈ G ⊂ L(Rn,Rn) is

BM (m) = Bi
jx

j(m) ∂
∂xi where (Ei

j) is a basis of G. Then from (3.5)-(3.7) the
n-momentum associated with B is

Ĵ(B)(u) = Π(B)(u) = B̂ = Bi
jx

j(m)πk
i (u)rk , (6.7)

and the n-momentum mapping is

J(u) = (xj(m)πk
i (u))Ci

j ⊗ rk (6.8)

where (Ci
j) is the basis of G∗ dual to the basis (Ei

j).
Take the special case when n=4 and G = SO(1, 3) with M equipped with the

Minkowski metric tensor g = ηij ∂
∂xi ⊗ ∂

∂xj . Then for B ∈ so(1, 3) we have

BM = Bi
jx

j ∂

∂xi
, (6.9)

which is a Killing vector field on M . Ĵ(B)(u) then gives the components of BM

with respect to the linear frame u = (m, ei). Since the Ci
j are ηij skew symmetric,

the 4-momentum (6.8) can be written as

J = (xjπk
i )ηjmC

im ⊗ rk

= (1/2)(xmπ
k
i − xiπ

k
m)Cim ⊗ rk

(6.10)

which has the form of a generalized angular momentum. Here Cim = ηijCm
j .

The explicit form of the conserved quantities follow from Theorem 3.1 upon
taking ĝ = ηabπi

aπ
j
bri ⊗ rj ∈ ST 2 as the Hamiltonian tensor on LM. ĝ is invariant

under the lifted action of SO(1,3) to LM. The Hamiltonian vector fields Xĝ are

Xĝ
i = ηabπi

a

∂

∂xb
. (6.11)

From Theorem 3.1 each J i , i = 0, 1, 2, 3 is constant along the flow of Xĝ
i for the

same i. Take the vector field Xĝ
1. The equations for its integral curves are:

ẋi = ηijπ1
j , (6.12a)

π̇i
j = 0 . (6.12b)

Equations (6.12) imply that ẍi = 0 so that the trajectory on M is a geodesic. Let
u0 = (m0, e0k) be the initial condition. Then (6.12b) implies that

πi
j(t) = πi

j(0) = e0i(
∂

∂xj
) := hi

j . (6.13)

Using this in (6.12a) we get

ẋi = ηijh1
j =⇒ xi(t) = xi

0 + tηijh1
j . (6.14)
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The flow F 1
t is then given in local coordinates by

(xi, πk
j ) ◦ F 1

t = (xi + tηiaπ1
a, π

k
j ) . (6.15)

We know that J1 is constant along the flow of Xĝ
1. From (6.8) and (6.15) we find

J1 ◦ F 1
t = (π1

j ◦ F 1
t )(xk ◦ F 1

t )Cj
k

= π1
j (xk + tηkaπ1

a)Cj
k

= π1
jx

kCj
k + tπ1

j η
kaπ1

aC
j
k

= π1
jx

kCj
k + tπ1

jπ
1
aC

ja

= π1
jx

kCj
k .

(6.16)

The second term in the next to last line vanishes since the Cja are skew-symmetric.
Now from (6.12a) we have π1

j = ηjkẋ
k. Substituting this into (6.16) we find

J1 ◦ F 1
t = x[iẋj]Cij (6.17)

which is the Lorentzian “angular momentum” of the observer along his straight
line geodesic trajectory. The six independent conserved quantities correspond to
the standard three angular momentum conservation laws together with the three
laws giving the finite form of Lorentz boosts (see, for example [11], pp. 93-94).

7. Conclusions

The cotangent bundle T ∗M of an n-dimensional manifold M is regarded as the
canonical model of a symplectic manifold. This is because each cotangent bundle
T ∗M has an intrinsic and naturally defined symplectic two-form dϑ, where ϑ is the
canonical one-form on T ∗M , and every symplectic manifold “looks like” a cotangent
bundle locally. What we have shown in this paper is that much, if not all, of the
symplectic geometry on (T ∗M,dϑ) is induced from n-symplectic geometry on the
bundle of linear frames LM of the manifold, where the n-symplectic potential on
LM is the Rn-valued soldering one-form θ. Specifically, we have shown:

(1) The soldering one-form θ induces the canonical one-form ϑ as in (1.1);

(2) Each symmetric ⊗p
sRn-valued tensorial observable f̂ ∈ ST p on LM induces a

degree p homogeneous polynomial observable f̃ on T ∗M as in (2.20). More-
over, the equivalence class [[Xf̂ ]] of ⊗p−1

s Rn-valued Hamiltonian vector fields
determined by f̂ ∈ ST p maps to the Hamiltonian vector field of f̃ on T ∗M as
in (5.35);

(3) The n-symplectic action of Diff(M) and the associated n-symplectic momen-
tum mapping on LM induce the symplectic action of Diff(M) and the associ-
ated momentum mapping on T ∗M as given in (3.9) and (3.10), respectively.

Hence those features of symplectic geometry on T ∗M associated with the poly-
nomial observables may be considered as induced from the n-symplectic geometry
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of symmetric tensorial observables on LM . We have not shown that the symplectic
geometry of arbitrary observables on T ∗M is induced from n-symplectic geometry
on LM , and whether or not this happens is an open question at the moment this.

On the other hand the polynomial observables on T ∗M play a distinguished
role in physical theories, especially in the theory of geometric quantization. In the
case of geometric quantization formulated on T ∗M , where M is the configuration
space of a mechanical system, one uses the symplectic potential ϑ to construct
a connection σ̃ on a trivial C× bundle π : L× → T ∗M in order to construct
the quantum operators associated with the observables on the phase space T ∗M
. These quantum operators may be defined in terms of the vector fields ζf on L×

that leave the connection σ̃ invariant. The map f → ζf for f ∈ C∞(T ∗M,R)
is a linear isomorphism from the Lie algebra of observables on T ∗M under the
Poisson bracket to the Lie algebra of vector fields ζf under the Lie bracket. In
the applications of the general theory [6,7] the operators associated with the linear
polynomial observables on T ∗M play an especially important role. We have shown
in this paper that a good deal of this structure can also be traced back to LM . In
particular we have shown:

(4) The n-symplectic potential θ may be used to construct a connection σ (Lemma
4.1) on the bundle of affine frames β : AM → LM , which is a trivial Rn

principal bundle over LM . There is a linear isomorphism f̂ → ζf̂ from the
Lie algebra of Rn-valued linear polynomial observables f̂ on LM under the
Poisson bracket to the Lie algebra of vector fields ζf̂ that leave the connection
σ invariant (Theorem 4.1);

(5) The C× bundle π : L× → T ∗M may be identified with a fiber bundle asso-
ciated to AM . Moreover, the connection σ on β : AM → LM induces the
connection σ̃ on L× discussed above (Theorem 5.1);

(6) The vector fields ζf̂ on AM may be mapped onto the subalgebra of vector
fields ζf on L× associated with the linear polynomial observables on T ∗M
(Lemmas 5.3 and 5.4).

The results presented in this paper show that at least for polynomial observables
one may replace canonical symplectic geometry on T ∗M with n-symplectic geome-
try on the bundle of linear frames LM . But what is gained by replacing symplectic
geometry based on the R-valued symplectic potential ϑ with n-symplectic geometry
based on the Rn-valued n-symplectic potential θ? The answer lies in the new in-
formation one obtains from n-symplectic geometry about the relationship between
observables and the associated Hamiltonian vector fields.

Canonical symplectic geometry on T ∗M assigns to each polynomial observable,
regardless of its degree, a single Hamiltonian vector field. On the other hand,
n-symplectic geometry assigns to a pth degree symmetric polynomial observable
f̂ ∈ ST p an equivalence class [[Xf̂ ]] of ⊗p−1

s Rn-valued vector fields, and a represen-

tative of [[Xf̂ ]] contains (n+p−2
p−1 ) Hamiltonian vector fields Xi1i2...ip−1

f̂
. These sets

of Hamiltonian vector fields associated with degree p ≥ 2 symmetric polynomial
observables provides new insights into the geometry and physics of such observ-
ables. We have shown in Theorem 5.2 that the arbitrariness in the definition of the
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equivalence classes determined by polynomial observables cancels out when they
are mapped to, and collapsed into, a single Hamiltonian vector field on T ∗M . The
equivalences classes thus represent a type of “gauge freedom” that is not detectable
by symplectic geometry on T ∗M .

As a specific example consider a four-dimensional Riemannian spacetime M with
metic tensor g. The free particle problem in the spacetime M is formulated in
symplectic geometry on T ∗M as follows. The metric tensor g defines a homogenous
quadratic polynomial observable on T ∗M , which we denote by g̃, and the free
particle Hamiltonian is then H̃ = g̃ where for simplicity we have choosen m = 1/2
for the mass of the particle. The dynamics of the free particle is given by the
single Hamiltonian vector field XH̃ , and integration of XH̃ , with time-like initial
conditions, tells us (1) that the trajectory on M of the particle is a geodesic of the
Levi-Civita connection determined by g, and (2) that the particle parallel transports
its four-momentum along the geodesic.

The formulation of the problem in 4-symplectic geometry on LM is as follows.
The metric tensor g determines an element ĝ ∈ ST 2, and we take Ĥ = ĝ for the free
particle Hamiltonian tensor. The dynamics is now specified by the equivalence class
of Hamiltonian vector fields [[XĤ ]] = [[XĤ ]]iri. A representative of the equivalence
class is composed of four Hamiltonian vector fields (see 2.16)

Xi
Ĥ

= gab(x)πi
a

∂

∂xb
− 1

2

(
∂gab

∂xk
πi

aπ
j
b + T ij

k

)
∂

∂πj
k

(7.1)

where i = 1, 2, 3, 4. The gauge freedom is specified by the components T ij
k which

must satisfy T
(ij)
k = 0 but are otherwise arbitrary. Since the structures of the

Poisson algebra (ST, { , }) and the Lie algebra of the associated equivalence classes
of Hamiltonian vector fields are independent of choice of representatives we are free
to set a gauge condition to select a representative set of vector fields. The gauge
condition [4]

Xi
Ĥ

Xj

Ĥ
dθk = 0 ∀ i, j, k (7.2)

determines a unique representative set of vector fields

Xi
Ĥ

= ĝijBj (7.3)

where the four vector fields Bj are the standard horizontal vector fields of the Levi-
Civita connection ωg on LM determine by g. Integration of any one of the vector
fields Xi

Ĥ
, with time-like initial conditions, now tells us (1) that the trajectory

on M of the particle is a geodesic of the Levi-Civita connection ωg determined
by g, and (2) that the particle parallel transports a full linear frame along the
geodesic with the time-like leg of the frame being the parallel transported four-
momentum of the particle. The extra information that is not contained in the
formulation of the problem on T ∗M , namely the parallel transport of a spatial
triad along a geodesic, together with the parallel transport of the four-momentum
along the geodesic, provides the complete and correct description of a freely-falling,
non-rotating particle.

There is more that one can say concerning these “free” systems on spacetime. On
T ∗M the constant energy surfaces to which XH̃ is tangent are the surfaces on which
H̃ = g̃ are constant. The analogue on LM are the orthonormal subbundles obtained
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from the canonical orthonormal subbundle OM by conjugation. The vector fields
in (7.3) are tangent to these subbundles, and the Hamiltonian tensor Ĥ = ĝ is
constant on each of these subbundles. Hence the n-symplectic phase space LM can
be thought of as the phase space of observers, since the dynamics described above is
what is normally thought of as the dynamics of freely-falling, non-rotating inertial
observers on spacetime. This interpretation is consistent with the interpretation
given in Sections 3 and 6 of the n-momentum mapping associated with Diff(m)
as providing a momentum frames rather than simply momentum.

The new features present in n-symplectic geometry also offer the possibility of
providing new insights in the theory of geometric quantization. As discussed at
the end of Section 4 the Hamiltonian vector fields for momentum and position
type variables on LM lift to operators on AM −→ LM that provide the Dirac
quantization rules that mirror that analogous results in the standard geometric
quantization theory. In both cases the momentum and position type variables
lead to single Hamiltonian vector fields. On the other hand we have seen above
that in 4-symplectic geometry the quadratic Hamiltonian based on the spacetime
metric tensor leads to the set of four Hamiltonian vector fields given in (7.3) above.
It is clear that this set of Hamiltonian vector fields offers new possibilities for
constructing quantum operators associated with the “free Hamiltonian” that is not
available in the standard theory. Consider a spacetime manifold that admits a spin
structure. In [4] it is argued that the assignment

Xf̂
iri −→ Pĝ = −i~γiXĝ

i , (7.4)

where the γi are the Dirac matrices, is a natural formulation of the Dirac operator
when the Xĝ

i are lifted to the spin bundle over the the bundle of orthonormal
frames. More details on how one accomplishes this lifting will be reported in a
future publication [12].

There are many details that have not been addressed in this paper concerning
the structure of a geometric quantization theory based on n-symplectic geometry.
Among other things we have not indicated how one can lift the vector-valued Hamil-
tonian vector fields for arbitrary allowable observables, nor have we addressed the
problem of constructing polarizations and the associated Hilbert spaces for the mo-
mentum and position type prequantization operators obtained in Section 4. We
hope to return to these and other related problems in future papers.

APPENDIX

Proof of Theorem 3.1

The proof is essentially the same as the proof of Theorem 4.2.2, page 277 in [10].
For each ξ ∈ G we have ĝ(Φexp(tξ)(u)) = ĝ(u) since ĝ is invariant. Differentiating

at t=0 we have
dĝ(ξLM ) = 0 (A1)

which implies that
LXĴ(ξ)

(ĝ) = 0 . (A2)
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Since we know that Ĵ(ξ) = Ĵ i(ξ)ri ∈ HF 1, (A2) implies that

{Ĵ(ξ), ĝ} = 0 . (A3)

Hence by Lemma 3.1 we know that

Ĵ i(ξ)(F i
t (u)) = Ĵ i(ξ)(u) for all ξ ∈ G . (A4)

By the definition of n-momentum mapping this implies

J i(F i
t (u)) = J i(u) (A5)
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Proof of Theorem 5.2.

We give a local coordinate proof of the theorem. Using the map ψα defined in
(5.34) it is easy to verify the formulas

ψα∗(
∂

∂xi
) =

∂

∂xi
, (A6)

ψα∗(
∂

∂πa
b

) = αa
∂

∂pb
. (A7)

First suppose p ≥ 2 and fix a point u ∈ LM and let w = ψα(u). We evaluate (5.35)
at u using (A6), (A7) and the local coordinate expressions for Xf̂

i1i2...ip−1(u) given
in (2.14).

p!ψ(α,c)∗(Xf̂
i1i2...ip−1(u)αi1αi2 · · ·αip−1)

=
p!

(p− 1)!
f j1j2...jp−1k(x)πi1

j1
(u)αi1π

i2
j2

(u)αi2 · · ·π
ip−1
jp−1

(u)αip−1

∂

∂xk
(w)

− p!
p!

(
∂f j1j2...jp

∂xa
πi1

j1
(u)αi1π

i2
j2

(u)αi2 · · ·π
ip−1
jp−1

αip−1π
b
jp

(u)
)
αb

∂

∂pa
(w)

− p!
p!
(
T i1i2...ip−1b

a (u)αi1αi2 · · ·αip−1

)
αb

∂

∂pa
(w)

(A8)
We note that when p = 1 the last term involving the arbitrary component T i1i2...ip−1b

a

does not occur in this formula, and when p ≥ 2 the last term in (A8) vanishes by
(2.15) since

T i1i2...ip−1b
a (u)αi1αi2 · · ·αip−1αb = T (i1i2...ip−1b)

a (u)αi1αi2 · · ·αip−1αb . (A9)

Using πi
j(u)αi = pj(w) back in (A8) we obtain for p ≥ 1

p!ψ(α,c)∗(Xf̂
i1i2...ip−1(u)αi1αi2 · · ·αip−1)

= pf j1j2...jp−1k(x)pj1(w)pj2(w) · · · pjp−1(w)
∂

∂xk
(w)

−
(
∂f j1j2...jp

∂xa
pj1(w)pj2(w) · · · pjp

(w)
)

∂

∂pa
(w) .

(A10)

This vector at w ∈ T ∗M is Xf̃ (w) where Xf̃ is the Hamiltonian vector field of the
function f̃ determined by f̂ by (2.20).

We still need to check that we get unique tangent vectors on T ∗M from the
many-to-one map ψα. Denote right translation on LM by h ∈ GL(n) by Rh, and
let ū = Rh(u) for h ∈ Gα so that hi

jαi = αj and ψα(ū) = ψα(u). Then using (2.2)
we have

πi
j(ū)αi = πi

j(Rh(u))αi = (h−1)i
kπ

k
j (u)αi = πk

j (u)αk . (A11)

Hence if we rewrite (A8) with u replaced everywhere by ū we again obtain (A10).
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