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Abstract

In previous work n-symplectic geometry on the adapted frame bundle λ : LπE → E

of an n = (m + k)-dimensional fiber bundle π : E → M has been used to forumulate

covariant Lagrangian field theory that is standardly formulated on the bundle J1π

of 1 jets of sections of π. In this paper we set up an n-symplectic Hamilton-Jacobi

equation in order to identify the analogue of a polarization that plays an important

role in geometric quantization theory. We find that a local solution of the n-symplectic

H-J equation yields a locally defined H = GL(m) × GL(k) subbundle of LπE. This

suggests that the gobal structure on LπE that is generated by local solutions of the

Hamilton-Jacobi equations is a foliation of LπE by H subbundles. Such a foliation of

LπE is shown to exist for the k-tuple of scalar fields on Minkowski spacetime.
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I Introduction

The n-symplectic formulation of covariant Lagrangian field theory was developed in two

recent publications. In [6] it was shown that a Lagrangian field theory on the bundle of 1-

jets J1π of sections of π : E →M lifts in a natural way to an H = GL(m)×GL(k) principal

bundle ρ : LπE → J1π, where m = dim(M) and dim(E) = n = m + k. One can then use

the lifted Lagrangian to define an n-symplectic structure, the Cartan-Hamilton-Poincare n-

symplectic structure. The algebra of observables defined by this n-symplectic structure was

discussed in [10], together with a generalized Legendre transformation. Given this structure

one can seek to generalize the Kostant-Souriau [4, 13] theory to a geometric quantization

theory of fields based on the n-symplectic formalism. To do this one must generalize the

concept of polarization of a symplectic manifold to the n-symplectic setting, and that is the

subject of this paper.

On any bundle of linear frames LE of an n-dimensional manifold E there is a canonical

Rn - valued 1-form, the soldering 1-form θ̂, that in n-symplectic geometry plays the role

of a canonically defined generalized symplectic potential. The manifold (LE, dθ̂) is then an

n-symplectic manifold. The reader is referred to the literature [3, 5, 6, 8, 9, 10] for the details

of the resulting geometry. When E is a fiber bundle π : E → M over a manifold M the

fiber structure on E gives rise to a reduction of LE to a certain subbundle, the bundle of

adapted linear frames LπE [5] . The convention we use is that a frame (p, e1, e2, . . . , em+k)

is in LπE if the last k vectors in the frame are vertical with respect to π. The n-symplectic

geometry on LE restricts to LπE to define an n-symplectic geometry with a restricted class

of observables. In [6] it was shown that the rank 1 observables of the canonical n-symplectic

geometry on LπE are kinematical in nature in that they represent variational vector fields.

In order to tie the geometry to the physics and to find dynamical algebras of observables

McLean and Norris introduced a modified n-symplectic geometry on LπE based on a La-

grangian defined on J1π. The structure of LπE is such that it is an H = GL(m) × GL(k)

principal bundle ρ : LπE → J1π. A Lagrangian L on J1π then lifts under the projection

ρ to define a Lagrangian L = ρ∗(L) on LπE. McLean and Norris then defined the Cartan-

Hamilton-Poincaré (CHP) 1-forms θ̂L (see equations (III.4) and (III.5) below). It is known [6]
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that when L is non-zero the bundle (LπE, dθ̂L) is an n-symplectic manifold. In [10] a reduc-

tion method was used to identify the observables defined by this n-symplectic structure. In

this paper we take another step toward a geometric quantization theory of fields and seek

to identify the analogue of a polarization that plays a central in the Kostant-Souriau [4, 13]

theory. Presumably the analogue of a polarization will be of fundamental importance in a

generalization based on n-symplectic geometry. The problem of defining a polarization of

LπE is non-trivial in that on LπE the fiber dimension and the base space dimension are

not equal as is the case on the canonical symplectic manifold T ∗M . To find an analogue we

formulate an n-symplectic Hamilton-Jacobi equation, and by analogy with standard theory

assume that a local solution of this equation will be a generating function for an n-symplectic

polarization. The formulation of the n-symplectic Hamilton-Jacobi equation will involve a

section σ : E → J1π, and here we will assume that we can find a global solution, leaving

aside for future work the questions and implications regarding the existence of such global

sections.

The structure of the paper is as follows. In section 2 we give a brief description of LπE,

including two important sets of coordinates, momentum coordinates and Lagrangian coor-

dinates. The Lagrangian coordinates will be seen to be naturally adapted to the bundle

ρ : LπE → J1π. In section 3 we briefly review the n-symplectic struture on LπE defined

by a Lagrangian on J1π, and review the n-symplectic Legendre transformation from LπE

to the momentum phase space QL. It will turn out that a local solution of the n-symplectic

Hamilton-Jacobi equations will define a section of the bundle QL → E. In section 4 we for-

mulate the n-symplectic Hamilton-Jacobi equation, and show that this generalized equation

contains both a Hamilton-Jacobi equation of the Cartheodory-Rund [1, 11] type together

with a generalized canonical equation. Solutions of the generalized equation depend on a

parameter τ(m) where m is the dimension of the base manifold M . With special choices

of the parameter solutions will also be solutions of the Cartheodory-Rund [1, 11] or de

Donder-Weyl [2, 15] equations.

In section 5 we examine the local solutions of the n-symplectic Hamilton-Jacobi theory

and show that such solutions define H subbundles of bothQL and LπE. We propose then that

the global structure on LπE that plays the role of an n-symplectic polarization is a foliation
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of LπE by H subbundles. The n-symplectic canonically conjugate variables on these H

subbundles are (π̂α, Ŝ
β), where π̂α are the momentum coordinates, and Sα are solutions of

the n-symplectic Hamilton-Jacobi equations. As an example we apply the theory in section 6

to the n-tuple of scalar fields on Minkowski spacetime. Assuming a generic potential function

in such a Lagrangian, the n-symplectic Hamilton-Jacobi equations are consistent if and only

if the scalar fields are massless. In this trivial bundle setting we obtain a complete integral

of the Hamilton-Jacobi equation, with the H-subbundles parameterized by the intial values

of the field velocities. Section 7 contains a brief summary and discussion of the results, and

a few facts about n-symplectic geometry are collected together in the appendix in section 8.

II The Canonical n-symplectic structure on LπE

On LE there exists the canonically defined Rm+k-valued soldering 1-form θ̂ = θαr̂α, where

(r̂α) denotes the standard basis of Rm+k. If X is a tangent vector to LE at u = (e, eα) then

θ̂u(X) = eα(λ∗(X))r̂α (II.1)

where (eα) denotes the coframe dual to the frame (eα) and λ : LE → E is the projection.

To see the significance of the soldering 1-forms (θα) = (θi, θA) in the field theory setting

we introduce canonical coordinates. Let (zα) = (xi, yA) denote local coordinates on E, where

(xi) are local coordinates on M , and (yA) are fiber coordinates on E. Then these coordinates

define local canonical coordinates [6] (zα, πβµ) on LE by the formulas

zα(u) = zα ◦ λ(u) , πµν (u) = eµ(
∂

∂zν
) , ∀ u ∈ LE

where we are thus using the same notation for the horizontal coordinates as we use for the

base space coordinates. In these coordinates the soldering 1-forms have the canonical form

θα = παβdz
β

Upon restricting the soldering 1-forms to the subbundle LπE and switching to Lagrangian

coordinates (xi, yA, uij, u
A
B, u

A
j ) (see the appendix) we find that the (θi, θA) take the special
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forms

θi = uijdx
j (II.2)

θA = uAB(dyB − uBk dx
k) (II.3)

where (uij) and (uAB) are non-singular matrix-valued functions on LπE, and uBk = ρ∗(yBk ) with

yBk the local velocity coordinates on J1π. These formulas show that the contact structure

(see references ([12]) and [6]) of J1π is unified in the soldering 1-form θ̂ on LπE.

In the n-symplectic theory the vector-valued 1-form θ̂ := θα ⊗ r̂α is considered as a

generalization of the canonical symplectic potential pidq
i on T ∗E. The closed vector-valued

2-form dθ̂ is also nondegenerate in the sense that X dθ̂ = 0 ⇔ X = 0. These ideas led to

the following definition [8] :

Definition II.1 The pair (LE, dθ̂) is an n-symplectic manifold.

The observables associated with this canonical n-symplectic structure on LE split up

into two disjoint sets, namely a Poisson algebra of symmetric ⊗pRn-valued functions and a

graded Poisson algebra of anti-symmetric ⊗pRn-valued functions. In the symmetric case the

observables are, in local canonical coordinates, polynomials in the n-symplectic momentum

coordinates with coefficients that are constant on the fibers of LE. In the anti-symmetric case

the observables are, in local canonical coordinates, Grassman polynomials in the momenta.

The homogeneous polynomials in both cases correspond to contravariant tensor fields on M ,

and the n-symplectic Poisson brackets when restricted to this subset of n-symplectic observ-

ables are known [9] to be the frame bundle version of the Schouten-Nijenhuis brackets [14, 7].

The reader is referred to the literature [9] for the details. However, the n-symplectic bracket

contains more than the Schouten-Nijenhuis bracket, and this difference and its implications

are discussed in section 7.
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III The Modified n-symplectic Structure Defined by a

Lagrangian L

In reference [6] it is shown that LπE is a principal H = GL(m) × GL(k) bundle over the

bundle J1π of 1-jets of sections of π. Letting ρ : LπE → J1π denote the projection, one can

define the CHP 1-forms θαL on LπE by the formulas

θiL := τLθi + E∗iA (L)θA (III.4)

θAL := θA (III.5)

where τ = τ(m) is a positive constant depending on the dimensionm of the base manifoldM ,

and E∗iA denotes the fundamental vertical vector field on LπE corresponding to the element

Ei
A in the standard basis (Eα

β ) of gl(n). Local coordinate formulas for these fundamental

vertical vector fields are given in the appendix. For different values of τ one can obtain the

de Donder-Weyl theory [2, 15] and the Caratheodory-Rund theory [1, 11] as special cases of

the formalism presented in reference [6]. MacLean and Norris [6] also proved the one may

easily construct the CHP m-form on J1π from the CHP 1-forms on LπE.

One can define this modified soldering 1-form using a frame bundle version of the

Legendre transformation [6]. Given a Lagrangian L : LπE → R we obtain a mapping

φL : LπE → LE given by

φL(u) = φL(e, ei, eA) =

(
e,

1

τL(u)
ei, eA −

1

τL(u)
E∗aA (L)(u)ea

)
(III.6)

This mapping is well-defined provided the Lagrangian is non-zero, and for the rest of this

paper we will assume this condition. This mapping is as the n-symplectic Legendre transfor-

mation. In reference [10] it is shown that θ̂L on LπE and θ̂ on QL are related as one might

expect by the formula

θ̂L = φ∗L(θ̂) (III.7)

We note that the CHP 1-forms given in (III.4) and (III.5) above can be expressed, using
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the Lagrangian coordinates defined in the appendix, in the form

θi = uij(−H
j
kdx

k + pjBdy
B) (III.8)

θA = uAB(−uAk dxk + dyB) (III.9)

where we have introduced the definitions

Hi
j := piAu

A
j − τLδij , piA :=

∂L

∂uAi
(III.10)

Using the additional definitions

(
hαβ
)

=

(
−Hk

j pkA
−uEj δEA

)
,

(
(∆u)αβ

)
=

(
ukj 0
0 uEA

)
(III.11)

equations (III.8) and (III.9) can be written in the following compact form:

θαL = ((∆u)αβ)h
β
γdz

γ (III.12)

For later reference we note here that when L 6= 0 the matrix (hαβ) has an inverse given by

(
(h−1)αβ

)
=

1

τL

(
δkj −pkA
uEj −(h−1)EA

)
, (h−1)EA = paAu

E
a − τLδEA (III.13)

The matrix ((∆u)αβ) in (III.12) transforms [6] under the groupH of the bundle ρ : LπE → J1π

while the second factor (hαβ) is H-invariant. We will use these facts in the next section to

set up a generalized Hamilton-Jacobi equation that will bring the modified n-symplectic

potential to canonical form.

In [10] it was shown that if the lifted Lagrangian is non-zero, then (LπE, dθ̂L) is an n-

symplectic manifold, and that φL is a diffeomorphism onto its image QL ⊂ LE. Hence QL

is a natural candidate for the momentum phase space of fields.

IV The n-symplectic Hamilton-Jacobi Equation

In symplectic geometry a local solution of the Hamilton-Jacobi equation on T ∗M plays the

role of a generating function for a polarization of T ∗M [16] . Here we seek an n-symplectic

analogue of such a polarization. The problem of defining a polarization of LπE is non-trivial

in that on LπE the fiber dimension and the base space dimension are not equal as is the
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case on T ∗M . To find the form of n-symplectic polarizations we formulate an n-symplectic

Hamilton-Jacobi type equation. Local solutions of this equation should then generate the

polarizations of LπE that we are seeking.

We seek sections σ : E → J1π that satisfy the equations

(σ∗hαβ) =

(
∂Sα

∂zβ

)
(IV.14)

for some m + k functions Sα defined on open subsets of E. This set of equations is the

H-invariant form of the generalized Hamilton-Jacobi equations proposed in [6].

For convenience we will denote with an over-tilde objects on J1π pulled back to E using

σ. Thus, for example, H̃i
j = Hi

j ◦ σ and p̃iA = piA ◦ σ. Then we get from (III.11) and (IV.14)

the equations

(a) H̃i
j = −∂S

i

∂xj
, (b) p̃iA =

∂Si

∂yA
(IV.15)

(a) ũBj = −∂S
A

∂xj
, (b) δ̃AB =

∂SA

∂yB
(IV.16)

Notice that equation (IV.14) makes sense because hαβ isH invariant and passes to the quotient

J1π = LπE/H. We will shortly use such a section to define H subbundles of LπE.

Consider first equations (IV.16), the second of which implies that

SA = yA − ψA(xa) (IV.17)

in terms of a new set of functions ψA(xi). Substitution of this result into the first of equations

(IV.16) yields

ũBj =
∂ψA

∂xj
(IV.18)

so that the section σ : E → J1π is holonomic and determines a section p → (xi(p), ψA(p))

of π : E →M .

Turning next to equations (IV.15) we note that Hi
j = piBu

B
j − τLδij and piA = ∂L

∂uA
i

are

functions of the coordinates xi, yA, and uAi , so that H̃i
j can be considered as a function of xi

and yA. Hence equations (IV.15) can be combined into the single equation

H̃i
j

(
xa, yB, p̃iA =

∂Si

∂yA

)
= −∂S

i

∂xj
(IV.19)
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This equation is clearly a generalized Hamiton-Jacobi equation and is similar to the Hamilton-

Jacobi equations in the Caratheodory-Rund [1, 11] and de Donder-Weyl [2, 15] canonical

theories.

Theorem IV.1 Suppose that the section σ : E → J1π satisfies equation (IV.14). Then σ

defines on U ⊂M a section ψ : U → E. Moreover the locally defined functions (Si, SA) are

such that:

1. The functions SA are given by SA = yA − ψA(xa)

2. The functions Si and ψA satisfy

(a) the generalized Hamilton-Jacobi equation H̃i
j(x

a, yE, uFb = ∂ψF

∂xb , p
c
D = ∂Sc

∂yD ) = −∂Si

∂xj

(b) the generalized canonical equations
(
∂H̃i

j

∂yA

)
= −

(
∂p̃i

A

∂xj

)
.

Proof

The integrability conditions of equation (IV.14) are(
∂h̃αβ
∂zµ

)
−

(
∂h̃αµ
∂zβ

)
= 0 (IV.20)

This equation splits up into six sets of equations:

0 =

(
∂H̃i

j

∂xk

)
−

(
∂H̃i

k

∂xj

)
(IV.21)

0 = −

(
∂H̃i

j

∂yA

)
−
(
∂p̃iA
∂xj

)
(IV.22)

0 =

(
∂p̃iA
∂yB

)
−
(
∂p̃iB
∂yA

)
(IV.23)

0 =

(
∂h̃Aj
∂xk

)
−

(
∂h̃Ak
∂xj

)
(IV.24)

0 =

(
∂h̃Aj
∂yB

)
−

(
∂h̃AB
∂xj

)
(IV.25)

0 =

(
∂h̃AC
∂yB

)
−

(
∂h̃AB
∂yC

)
(IV.26)
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Equation (IV.26) is identically satisfied, while equations (IV.21) and (IV.23) - (IV.25) imply

equations (IV.17) - (IV.19), which yields part 1 and part 2-a of the theorem. Equation

(IV.22) is the generalized canonical equation, which is part 2-b of the theorem.

Remark: We note that every solution of the the generalized canonical equations (2b) in

the theorem will also be a solution of the de Donder - Weyl equations [11]

∂H

∂yA
= −∂p

i
A

∂xi
(IV.27)

when we put τ = 1
m

. This is because this equation is the trace of the uncontracted n-

symplectic equation (
∂H̃i

j

∂yA

)
= −

(
∂p̃iA
∂xj

)
(IV.28)

that appears in the above theorem, since the de Donder-Weyl Hamiltonian H is identically

equal to the trace H̃ i
i of the H̃ i

j when τ = 1
m

. It is clear that the uncontracted equation is

more restrictive than the contracted equation. Solutions (Si, SA) serve to define the canonical

field variables (Ŝα, π̂β) on LπE. All other observables will then be polynomials in the π̂α

with coefficients that are functions of the variables Sα. For this reason we shall refer to the

canonical variables (Ŝα, π̂β) as basic states of the field. In the example we will examine the

basic states of the n-tuple of scalar fields on Minkowski spacetime.

V Canonical variables π̂α and Ŝβ

In this paper we pursue the local theory and will consider the global theory in future work.

Accordingly let us assume that we have found a global section σ : E → J1π together with

functions (Si, SA) defined locally on U ⊂ E and satisfying the above equations. For such a

section we define a subset Bσ ⊂ LπE by the equation

Bσ := ρ−1(σ(E))

Bσ is clearly an H bundle over the section σ(E), with projection mapping ρ|Bσ . By com-

position with the projection π1,0 : J1π → E we may think of Bσ as an H bundle over

U ⊂ E.
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It is not difficult to show that in fact the local solutions (Sα) of the Hamilton-Jacobi

equation defines a local section of QL. In fact if we denote this section by σ1 : E → QL, then

it is not difficult to show from the definition of φL that

(φL)∗(
∂

∂xi
+ ũAi

∂

∂yA
) =

∂

∂Si

It then follows that Bσ = (φL)−1(σ1(E)) ·H. We then let µ := (φL)−1(σ1(E)).

On LπE the CHP 1-forms θiL are given by

θiL = −πijH
j
kdx

k + πijp
j
Ady

A = πij(−H
j
kdx

k + pjAdy
A) (V.29)

If we evaluate these 1-forms on the section µ we find for u ∈ µ(E)

θiL(u) = π̃ijdS
j (V.30)

and

θAL (u) = π̃ABdS
B (V.31)

Then for each h ∈ H we have

θiL(u · h) = (h−1)ikθ
k
L(u) = (h−1)ikπ̃

k
j (u)dS

j = πij(u)dS
j (V.32)

since both θiL and πij transform tensorially under the group H and πij(u · h) = (h−1)ikπ
k
j (u).

Similarly for θAL . Hence the restriction θ̂L|Bσ
of the modified n-symplectic potential θ̂L is in

the canonical form (θαL|Bσ
) = (πijdS

j, πABdS
B) with respect to the coordinates (Sα, πij, π

A
B) on

Bσ. On Bσ we therefore have the following 2-forms:

dθiL|Bσ
= dπij ∧ dSj (V.33)

dθAL |Bσ
= dπAB ∧ dSB (V.34)

dθ̂L|Bσ
is clearly closed and non-degenerate, so that (Bσ, dθ̂L|Bσ

) is an n-symplectic manifold.

This implies that π̂α = (πji r̂j, π
B
A r̂B) and Ŝβ = (Sir̂i, S

Ar̂A) are canonically conjuate pairs

of n-symplectic observables with respect to the modified n-symplectic form dθ̂L|Bσ
on Bσ.

In addition we know that the n-symplectic Hamiltonian vector field Xπ̂i
determined by the

momentum coordinate π̂i = πji r̂j is Xπ̂i
= ∂

∂Si . If the integrability conditions of equations
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n-symplectic canonical variables on Bσ

Conjugate variables Hamiltonian vector fields

Ŝi = Sir̂i (no sum on i) XŜi = − ∂
∂πi

i
(no sum on i)

π̂i = πji r̂j Xπ̂i
= ∂

∂Si = 1
τ L̃

(
∂
∂xi + ũAi

∂
∂yA

)
ŜA = SAr̂A (no sum on A) XŜA = − ∂

∂πA
A

(no sum on A)

π̂A = πBA r̂B Xπ̂A
= ∂

∂SA = 1
τ L̃

(
−p̃iA ∂

∂xi − (h̃−1)BA
∂
∂yB

)
≡ ∂

∂yA − 1
τ L̃
p̃iA

d
dxi

Table 1: n-symplectic canonical variables

(IV.14) are satisfied then the functions (Sα) define a new coordinate system on E, and we

have
∂

∂Si
=
∂xk

∂Si
∂

∂xk
+
∂yB

∂Si
∂

∂yB
(V.35)

Using (III.13) for the matrix ( ∂z
α

∂Sβ ) we find

∂

∂Si
=

1

τ L̃

(
∂

∂xi
+ ũAi

∂

∂yA

)
(V.36)

Similarly we find
∂

∂SA
=

∂

∂yA
− 1

τ L̃
p̃iA

d

dxi
(V.37)

The conjugate variables and their n-symplectic Hamiltonian vector fields are displayed in

Table 1.

The canonical commutation relations of the canonical variables (π̂α, Ŝ
α) on Bσ are [8]

{Ŝα, Ŝβ} = 0 , {π̂α, π̂β} = 0 , {π̂α, Ŝβ} = δβαr̂β (V.38)

Inspection of these relations revels that they divide into three sets:

{Ŝi, Ŝj} = 0 , {π̂i, π̂j} = 0 , {π̂i, Ŝj} = δji r̂j (V.39)

{ŜA, ŜB} = 0 , {π̂A, π̂B} = 0 , {π̂A, ŜB} = δBA r̂B (V.40)

{Ŝi, ŜA} = 0 , {π̂i, π̂A} = 0 , {π̂A, Ŝi} = 0 , {π̂i, ŜA} = 0 (V.41)
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Equations (V.39) are the m-symplectic equations for L(Rm), while equations (V.40) are the

k-symplectic equations for L(Rk). Finally equations (V.41) show that the full algebra on Bσ

is a direct sum of these two algebras.

Theorem V.1 The n-symplectic algebra on Bσ defined in (V.38) is the direct sum of the

n-symplectic algebra on L(Rm) with the k-symplectic algebra on L(Rk). Symbolically we write

< Sα, πβ >=< Si, πj > ⊕ < SA, πB > (V.42)

So far we have only considered the geometry associated with a single solution of the n-

symplectic Hamilton-Jacobi equation. If we can find what one would want to call a complete

integral of these equations, that is to say solutions that are parameterized by some initial

values of the fields, then we would have an H-subbundle of LπE for each initial condition. In

at least the simpliest models we would then obtain a foliation of LπE by H-subbundles, and

we take this foliation as the basic model of an n-symplectic polarization. In the next sedtion

we find this polarization for the simple case of an n-tuple of scalar fields on Minkowski

spacetime.

VI Example: The k-tuple of scalar fields on Minkowski

spacetime

In this example we use the following strategy to solve the Hamilton-Jacobi-canonical equa-

tions (IV.14). We first solve the generalized canonical equation (IV.28) for a section of

π : E → M , and then substitute the section into equations (IV.15) and (IV.16) and solve

for the coordinate functions (Si, SA). M denotes 4-dimensional Minkowski spacetime.

For the k-tuple of scalar fields we consider E as a vector bundle over M with standard

fiber the linear space Rk. We choose the general form of the Lagrangian for such a field to

be

L =
1

2
ηijδABu

A
i u

B
j − µ2V (yA) + L0 (VI.43)

where ηij are the components of the Minkowski metric tensor in inertial coordinates (xi),

and δAB are the components of the internal Euclidean metric in the fiber coordinates (yA).
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The term V (yA) denotes a general potential function that depends only on the field coor-

dinates yA, and L0 is a positive constant added on to guarantee that the total Lagrangian

is positive. We consider this Lagrangian as defined on LπE in the Lagrangian coordinates

(xi, yA, uij, u
A
B, u

A
i ), and rename it L. Assuming that the Hamilton-Jacobi equations are sat-

isfied we have the following expressions that derive from the Lagrangian:

ũAi =
∂ψA

∂xi
(VI.44)

p̃iA = ∂iψA (VI.45)

H̃i
j = (∂iψA)(∂jψ

A)− τ L̃δij (VI.46)

The generalized canonical equations (IV.28) for this case are

ηik∂j∂kψ
A =

µ2

τ
yAδij (VI.47)

Since there is no yA dependence on the left hand side of this equation both sides must vanish

separately. The vanishing of the right hand side yields µ = 0 so only massless scalar fields

are compatible with the n-symplectic Hamilton-Jacobi equation. The vanishing of the left

hand side of the equation implies ∂i∂jψ
A = 0. Hence ψA = ξAi x

i + kA where (ξAi ) ∈ Rm×k

and (kA) ∈ Rk are constants.

As discussed above we know that the Hamilton-Jacobi functions SA are given by SA =

yA − ψA. We now seek the functions Si, which are defined in equations (IV.15). Since ∂iψ
A

are all constant , both H̃i
j and p̃iA are also constants. Hence equations (IV.15) imply

Si = −H̃i
jx
j + p̃iAy

A + ci (VI.48)

where H̃i
j = ξAj ξ

i
A−τ(1

2
(ξ2)+L0)δ

i
j and p̃iA = ξiA. Notice that we have found a ”complete inte-

gral” of the generalized Hamilton-Jacobi equation (IV.14) with the functions (Sα) depending

on the parameters ξAa .

Let Σ0 ⊂ Rm×k be the open subset of Rm×k defined by the non-zero condition Lξ 6= 0.

For each ξ ∈ Σ0 we obtain a corresponding section σξ : E → J1π and an H-subbundle

Bσξ
⊂ LπE, and we set

BΣ0 := ∪ξ∈Σ0Bσξ
(VI.49)

We thus have a decomposition of the portion of LπE on which the Lagrangian is non-zero

into a disjoint union of H subbundles over E.
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VII Conclusions

In this paper we have identified, in the context of the n-symplectic theory, the analogue

of a polarization of a symplectic manifold. To do this we used the bundle ρ : LπE →

J1π to lift a Lagrangian on J1π to a Lagrangian on LπE. We then could exploit the n-

symplectic structure defined by this Lagrangian. In particular we formulated an n-symplectic

Hamilton-Jacobi equation, and found that it contained both a classical Hamilton-Jacobi type

equation together with a generalized canonical equation. Local solutions of this equation

were shown to define H subbundles of LπE, and hence led us to propose a foliation of LπE

by H subbundles as the choice of a real polarization in n-symplectic theory. The theory

was applied to the n-tuple of scalar fields on Minkowski spacetime. We found that the

n-symplectic Hamilton-Jacobi equation describes only massless scalar fields. In the trivial

bundle setting we were able to identify a complete integral for the Hamilton-Jacobi equation,

which led to a decomposition of the portion of LπE on which the Lagrangian is non-zero

into a disjoint union of H subbundles over E.

A few remarks are in order concerning the relationship of the n-symplectic brackets to

the brackets of Schouten [14] and Nijenhuis [7]. The full n-symplectic bracket is an extension

of the Schouten-Nijenhuis bracket [8, 9], as can be seen as follows. For p = 1 the allowable

Hamiltonian functions on LE decompose as [8]

HF 1 = T 1(LE)⊕ C∞(E,Rn)

where the second factor denotes functions on LE that are constant on fibers and hence

are lifts of Rn-valued functions on E. The first factor T 1(LE) denotes the set of Rn-valued

”tensorial” functions that transform under the standard representation ofGL(n) on Rn. Such

tensorial functions are in 1-1 correspondence with vector fields on E. If we write f̂ ∼ ~f ⊕ ξ

and ĝ ∼ ~g⊕ η for two such elements of T 1(LE)⊕C∞(E,Rn), then the n-symplectic bracket

of f̂ and ĝ can be expressed as

{f̂ , ĝ} ∼ [~f,~g]⊕
(
~f(ξ)− ~g(η)

)
The term in square brackets on the right hand side is the Lie bracket of vector fields ~f and

~g on E, and the piece ~f(ξ) − ~g(η) is the new piece that is not part of the definition of the
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Schouten-Nijenhuis [14, 7] bracket. One might think that it would be sufficient to work with

the ”tensorial” part of HF 1, but this is not correct, as the ”coordinate observables” live in

the C∞(E,Rn) part of HF 1. If one hopes to write down canonical commutation relations

that include the brackets of momenta and coordinates as is done in standard theory, then one

must include the extra factors in the bracket. More explicitly, suppose one has coordinates

(zα, πβµ) on LE. Then the n-symplectic momentum and coordinate variables are, respectively,

π̂α = πβαr̂β ∈ T 1(LE) , ẑλ = zλr̂λ ∈ C∞(E,Rn) (no sum on λ)

The n-symplectic brackets of these variables are [8]:

{π̂α, π̂β} = {ẑµ, ẑν} = 0 , {π̂α, ẑβ} = δβαr̂β

and these brackets have the same general form as the canonical commutation (CC) relations

on, say, the cotangent bundle T ∗E. If one insists on using only the tensorial part of HF 1

then one will not be able to obtain these commutation relations. One might try to put the

coordinate variables zα into the tensorial part using the locally defined ”radius vector” ~R =

zα ∂
∂zα which corresponds to the tensorial piece R̂ = zαπβαr̂β ∈ T 1(LE), but as easily checked

these variables will not yield the correct CC-relations. Thus the n-symplectic brackets on LE

generalize in an important way the brackets for symmetric and antisymmetric contravariant

tensor fields discovered by Schouten and Nijenhuis.

VIII Appendix: The Vertically Adapted Linear Frame

Bundle LπE

Let π : E →M be a fiber bundle where M is m-dimensional and E is n = m+k-dimensional.

Lower case latin indices are assumed to range over 1 . . .m, upper case latin indices over

m+ 1 . . .m+ k, and greek indices over 1 . . .m+ k. This convention will be used throughout

the paper.

An adapted frame at e ∈ E is a frame where the last k basis vectors are vertical. Note that

coordinate frames that come from adapted coordinates are adapted frames. The adapted
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frame bundle of π, denoted LπE, consists of all adapted frames for E.

LπE = {(e, {ei, eA}) : e ∈ E, {ei, eA} is a basis for TeE, and duπ(eA) = 0}

The canonical projection, λ : LπE → E, is defined by λ(e, {ei, eA}) = e.

LπE is a reduced subbundle of LE, the frame bundle of E (Lawson [5]). As such it

is a principal fiber bundle over E. Its structure group is Gv, the nonsingular block lower

triangular matrices.

Gv =

{(
A 0
C B

)
: A ∈ GL(m), B ∈ GL(k), C ∈ Rkm

}
Gv acts on LπE on the right by

(e, {ei, eA}) ·
(
A 0
C B

)
= {(e, {eiAij + eAC

A
j , eAB

A
B})

If (xi, yA) are adapted coordinates on an open set U ⊆ E, then one may induce sev-

eral different coordinates on LπE. The coframe or n-symplectic momentum coordinates

(xi, yA, πij, π
A
j , π

A
B) on λ−1(U) are defined by, for u = (e, {ei, eA}) ∈ LπE,

xi(u) = xi(e) πij(u) = ei(
∂

∂xj
) πAB(u) = eA(

∂

∂yB
)

yA(u) = yA(e) πAj (u) = eA(
∂

∂xj
)

Here (ei, eA) is the dual frame to (ei, eA). We have as is customary retained the same

symbols for the induced horizontal coordinates. The symbol that is missing from the above

list, namely πiA, defined in te obvious way, vanishes identically on LπE.

The frame or n-symplectic velocity coordinates (xi, yA, vij, v
A
j , v

A
B) on λ−1(U) are defined

by, for u = (e, {ei, eA}) ∈ LπE,

xi(u) = xi(e) vij(u) = ej(x
i) vAB(u) = eB(yA)

yA(u) = yA(e) vAj (u) = ej(y
A)

The v coordinates, viewed together as a block triangular matrix, form the inverse of the π

coordinates above. The blocks have the following relations:

vijπ
j
k = δik vAj π

j
k + vABπ

B
k = 0 vABπ

B
C = δAC
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One may construct from the previous two coordinate systems a third important system.

Define (xi, yA, uij, u
A
j , u

A
B) on λ−1(U) by

xi(u) = xi(e) uij = πij uAj = vAi π
i
j = −vABπBj

yA(u) = yA(e) uAB = πAB

It is shown in reference [6] that the uAj coordinates are pull-ups of the standard jet coordinates

on J1π. As such, we will refer to these coordinates as Lagrangian coordinates.

We need the following formulas for the fundamental vertical vector fields E∗αβ on LπE in

Lagrangian coordinates.

E∗ij = −uik
∂

∂ujk
E∗AB = −uAC

∂

∂uBC
E∗iA = uikv

B
A

∂

∂uBk
(VIII.50)
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