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Abstract
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anti-symmetric contravariant tensor fields, respectively, on an n-dimensional

manifold M are shown to be n-symplectic. This is accomplished by showing

that both brackets may be defined in a unified way using the n-symplectic

structure on the bundle of linear frames LM of M . New results in n-symplectic
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of the Hamiltonian operators defined by the Schouten-Nijenhuis brackets.
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1 Introduction

n-symplectic geometry [3, 4, 12, 15, 16] is the generalized symplectic geometry on the

principal bundle of linear frames LM → M of an n-dimensional manifold M that one

obtains by taking the Rn-valued soldering 1-form θ as the generalized symplectic po-

tential. In this paper we describe the explicit relationship of the n-symplectic bracket

on LM to the Schouten-Nijenhuis brackets of contravariant tensor fields on M , and

use some new results in n-symplectic theory to exhibit globally defined Hamiltonian

operators associated with the Schouten-Nijenhuis brackets.

The Schouten-Nijenhuis bracket, first introduced by J. A. Schouten [18] for con-

travariant tensor fields, was resolved by Nijenhuis [14] into a Lie bracket ( , )
S/N

and

a graded Lie bracket [ , ]
S/N

for the spaces of symmetric SX (M) = ⊕∞
q=1SX q(M) and

anti-symmetric AX (M) = ⊕∞
q=1AX q(M) contravariant tensor fields, respectively, on

a manifold M . The Schouten-Nijenhuis bracket ( , )
S/N

also acts as a derivation on

the associative algebra (SX (M),⊗s), thus giving the space SX (M) the structure of

a Poisson algebra [2]. Similarly the Schouten-Nijenhuis bracket [ , ]
S/N

, which acts as

a graded derivation on the associative algebra (AX (M),⊗a), gives the space AX (M)

the structure of a graded Poisson algebra. One is led to ask the question:

Are these algebras symplectic? That is to say, are there symplectic struc-

tures that one can use to define the Schouten-Nijenhuis brackets?

This question is geometrical rather than algebraic in spirit. That is to say, we seek to

understand the geometrical significance of the Schouten-Nijenhuis brackets for ten-

sor fields on a manifold M , since the algebraic significance of the Schouten-Nijenhuis

brackets is now rather well understood. In a manuscript devoted to a study of Poisson

structures Bhaskara and Viswanath [2] remark: “We have observed that this Schouten

product is essentially algebraic in nature and that its differential geometric setting is

only incidental.” Their approach was to recast the Schouten-Nijenhuis bracket as a
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bracket for multiderivations of the smooth functions on M . Michor [13] has charac-

terized the Schouten-Nijenhuis bracket [ , ]
S/N

as the unique (up to a multiplicative

constant) natural concomitant mapping AX q(M)×AX r(M) to AX q+r−1(M). Finally

we note that Kosmann-Schwarzbach [9] has described how the Schouten-Nijenhuis

brackets are related to the general idea of Loday brackets. Our objective in this pa-

per is to explain the geometrical significance of the Schouten-Nijenhuis brackets in

the specific case that they are defined for contravariant tensor fields on a manifold M .

The first step in this direction in this paper is to show that the Schouten-Nijenhuis

brackets are n-symplectic by showing that both brackets may be defined on a mani-

fold M in a unified way in terms of the n-symplectic bracket on the bundle of linear

frames LM → M .

It has long been known, going back to the comment by Nijenhuis 1 in his 1955

paper, that the Schouten-Nijenhuis bracket ( , )
S/N

is related to the canonical Poisson

bracket of the associated functions on the cotangent bundle T ∗M of the manifold.

Specifically, suppose that f ∈ SX q(M). Then f defines a real-valued function f̃ on

T ∗M by the formula

f̃(m, α) = fm(α, α, . . . , α)︸ ︷︷ ︸
q−factors

∀ (m, α) ∈ T ∗M (1.1)

where m ∈ M and α is a covector in T ∗Mm. A function of this type is referred

to [21] as a homogeneous polynomial observable of degree q on T ∗M . Denote by

Polyq the space of homogeneous polynomial observable of degree q on T ∗M induced

in this way by elements of SX q(M), and denote the direct sum of these spaces by

Poly. Then for f̃ ∈ Polyq and g̃ ∈ Polyr, one may define a bracket operation

( , ) : Polyq × Polyr → Polyq+r−1 by the formula

(f̃ , g̃) = ˜(f, g)
S/N

(1.2)

where f ∈ SX q(M) and g ∈ SX r(M) are the symmetric contravariant tensor fields

1See the Note added in proof in [14], p. 397.
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on M that define f̃ and g̃, respectively. It is easy to check that this bracket agrees

with the restriction of the canonical Poisson bracket on T ∗M to Poly.

The arguement can also be reversed [21]. One first defines the polynomial ob-

servables Poly intrinsically [10] on T ∗M relative to the vertical polarization 2. Then

each f ∈ Polyq is uniquely related to an element σ(f) ∈ SX q(M) on M . One can

then define the bracket of σ(f) and σ(g) to be σ({f, g}) where { , } denotes the

canonical Poisson bracket on T ∗M . One finds that σ({f, g}) is indeed equal to the

Schouten-Nijenhuis bracket (σ(f), σ(g))
S/N

. For these reasons we may say that the

Schouten-Nijenhuis bracket ( , )S/N is symplectic. Note, however, that there is no

possibility of lifting the Schouten-Nijenhuis bracket for anti-symmetric tensor fields

to define a bracket on T ∗M since the right hand side of (1.1) vanishes identically if

the tensor f is anti-symmetric. In this paper we will show that both brackets may be

considered as n-symplectic brackets in that both of the Schouten-Nijenhuis brackets

on M can be defined in a unified way using the n-symplectic bracket on LM . The con-

clusion to be drawn is that the Schouten-Nijenhuis brackets for contravariant tensor

fields on a manifold M may be thought of as remnants of the n-symplectic structure

on LM , and the geometrical significance of the Schouten-Nijenhuis brackets is that

they reflect the two independent degrees of freedom in specifying, for example, a rank

p contravariant tensor field, namely the freedom to choose an arbitrary frame (the LM

degree of freedom) and the freedom to choose components (the T pRn degree of free-

dom). These two independent degrees of freedom are tied together by the GL(n,R)

tensorial action, and this all shows up explicitly when the rank p contravariant tensor

bundle is thought of as the vector bundle

LM ×
GL(n,R)

T pRn

2The intrinsic definition yields the non-homogeneous polynomials. One can then define the

subspace of homogeneous polynomials of degree q to be composed of the degree q polynomials that

satisfy the equation E(f) = −qf , where E is the Euler vector field on T ∗M defined by ϑ = −E dϑ,

and ϑ is the R-valued canonical 1-form on T ∗M .
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associated to LM .

The second goal of the paper is to develop explicit globally defined formulas for

the Hamiltonian operators defined by the Schouten-Nijenhuis brackets in terms of

geometrical quantities that can be integrated to yield integral curves and their gen-

eralizations. Following the ideas in [2] we define a Hamiltonian operator Xf for

f ∈ SX q(M) by the formula

Xf (g) = (f, g)
S/N

∀ g ∈ SX (M) (1.3)

These Hamiltonian operators, which generalize the Hamiltonian vector fields on a

symplectic manifold, form an infinite dimensional vector space and clearly should

have an algebraic structure related to the Poisson algebra (SX (M), ( , )
S/N

). The

question arises as to whether one can find an explicit formula for Xf in terms of

tensors and other geometric objects and operations. There is a parallel question

for the Schouten-Nijenhuis bracket [ , ]
S/N

. Michor [13] obtains invariant formulas

for [ , ]
S/N

(see also Tulczyjew [20]) and hence implicitly, invariant formulas for the

associated Hamiltonian operators. Our goal is to develop this further by obtaining

explicit representations of the Hamiltonian operators in terms of familar geometric

quantities. The basic idea can be described as follows.

We recall [14] that the original definition of the Schouten-Nijenhuis bracket was

given in terms of local coordinates on M as follows. Consider, for example, the

symmetric case. Suppose A and B are symmetric rank p and q contravariant tensor

fields, respectively, on an n-dimensional manifold M . Let their components with

respect to some chart (xi) be denoted by Ai1i2...ip and Bk1k2...kq . Then the Schouten

bracket of A and B is a rank p+ q− 1 symmetric contravariant tensor field (A, B)
S/N

with components

(A, B)i1...ip−1jk1...kq−1

S/N
= pAl(i1i2...ip−1

∂

∂xl
Bjk1...kq−1) − qBl(k1...kq−1

∂

∂xl
Aji1...ip−1) (1.4)

where the round brackets ( ) around indices denotes symmetrization over those in-

dices. This formula has the remarkable property that the right-hand-side in invariant
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under the substitution ∂
∂xi −→ ∇i where ∇ denotes the operation of covariant differ-

entiation with respect to any torsion-free linear connection. It is in fact this property

that guarantees that the right-hand-side of this formula indeed gives the components

of a rank p+q−1 tensor field. Thus for each choice of a symmetric linear connection,

one can write down the above formula in a globally defined, invariant way without

reference to any coordinate system. One should then also be able to extract an in-

variant definition for Xf on M , which would certainly involve the algebraic concepts

of derivations [13] and multiderivations [2]. We prefer instead to seek representations

in terms of geometrical quantities, like vector fields, that can be integrated to yield

geometrical information. Thus, rather than pursuing this directly, we will instead

construct the n-symplectic Hamiltonian operators on LM , once we have established

the fact that the Schouten-Nijenhuis brackets are n-symplectic. These Hamiltonian

operators on LM turn out to be equivalence classes of vector-valued vector fields,

where the equivalence classes reflect a certain n-symplectic gauge freedom. We will

show that each choice of a torsion-free linear connection on LM breaks the gauge

symmetry and selects unique representatives from the equivalence classes. This sym-

metry breaking by torsion-free connections is the n-symplectic characterization of the

substitution freedom ∂
∂xi −→ ∇i discussed above. In order to illustrate the signifi-

cance of this symmetry breaking we apply the theory to the “free observer system”

in a fixed curved spacetime. We show that if one selects the Levi-Civita connection

defined by the spacetime metric itself, then integration of the time-like Hamiltonian

vector field of the “free observer Hamiltonian” on LM yields freely falling observers in

the spacetime, i.e. non-rotating observers moving along geodesics of the Levi-Civita

connection. If instead one fixes the n-symplectic gauge by selecting an arbitrary

torsion-free connection, then one still finds observers moving along the spacetime

geodesics of the metric connection, but these observers experience “generalized rota-

tional forces” that are generated by the non-metricity of the chosen connection.

The structure of the paper is as follows. In Section 2 we show that both Schouten-
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Nijenhuis brackets are n-symplectic. In Section 3 we first present a brief review of the

n-symplectic Hamiltonian operators associated with the vector-valued tensorial func-

tions on LM . These n-symplectic Hamiltonian operators are equivalence classes of

sets of vector fields. We then present new results that show how to select representa-

tives of the n-symplectic Hamiltonian operators for each choice of a torsion-free linear

connection on LM . In Section 4 we apply the theory to the “free observer system”

discussed above. Finally in Section 5 we present conclusions about the results of this

paper and the relationship of n-symplectic geometry, and hence Schouten-Nijenhuis

brackets, to other more standard symplectic type theories. There is also an appendix

which contains some facts about n-symplectic geomtry that are needed earlier in the

paper.

For later reference we collect together here much of the notation that will be used

throughtout the paper.

NOTATION

1. X p(M) dentoes the space of smooth rank p contravariant tensor fields on M ,

with p ≥ 1.

2. T p(LM) denotes the space of smooth GL(n,R)-tensorial functions on LM , with

ranges (⊗)pRn.

3. SX p(M) and AX p(M) denote the spaces of smooth rank p symmetric and anti-

symmetric contravariant tensor fields, respectively, on M , with p ≥ 1.

4. SX (M) = ⊕∞
p=1SX p(M) and AX (M) = ⊕∞

p=1AX p(M).

5. ⊗s denotes the symmetric and ⊗a the anti-symmetric tensor product.

6. ST p(LM) and AT p(LM) denote the spaces of smooth GL(n,R)-tensorial func-

tions on LM , with ranges (⊗s)
pRn and (⊗a)

pRn, respectively.

7. ST (LM) = ⊕∞
p=1ST p(LM) and AT (LM) = ⊕∞

p=1AT p(LM).

7



2 The n-symplectic structure on LM

The GL(n,R)- principal fiber bundle of linear frames LM of an n-dimensional man-

ifold M supports a canonically defined Rn-valued 1-form, the so-called soldering 1-

form θ (see the appendix). As defined in [15], n-symplectic geometry is the generalized

symplectic geometry on LM that one obtains by taking dθ as the generalized sym-

plectic form. Some facts about n-symplectic geometry are listed in the appendix, and

the interested reader may find more details in [15, 16].

We recall [8] that a rank p contravariant tensor field f on an n-dimensional mani-

fold M is uniquely related to a ⊗p(Rn)-valued tensorial function f̂ on LM as follows.

Represent a point u ∈ LM by the pair (m, ei) where (ei) , i = 1, 2, . . . , n denotes a

linear frame at m ∈ M . Then for each p ≥ 1, one may consider u as the linear map

u : ⊗pRn → T pMm , u(ξiii2...ip) = ξiii2...ipei1 ⊗ ei2 ⊗ · · · ⊗ eip (2.5)

with inverse mapping

u−1 : T pMm → ⊗pRn , u−1(ξ) = (ξ(ei1 , ei2 , . . . , eip)) (2.6)

The domain of u and the range of u−1 specialize to (⊗s)
pRn if f is symmetric, and

to (⊗a)
pRn if f is anti-symmetric.

Let π : LM → M be the canonical projection π(m, ei) = m. Given f ∈ X p(M)

one defines f̂ ∈ T p(LM) on LM by the formula

f̂(u) = u−1(f(π(u))) (2.7)

One shows [8] that such a function f̂ satisfies the tensorial transformation law

R∗
g(f̂) = g−1 · f̂ , ∀g ∈ GL(n,R) (2.8)

where Rg denotes right translation on LM by g ∈ GL(n,R), and the dot on the right

hand side denotes the standard action of GL(n,R) on (⊗s)
pRn. Conversely, given

f̂ ∈ T p(LM) on LM , one defines f ∈ X p(M) on M by the formula

f(m) = u(f̂(u)) (2.9)
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where u is any point in LM such that π(u) = m. The tensorial character of f̂

guarantees that the right-hand-side of this last equation is independent of which

u ∈ π−1(m) one uses, so that f is well-defined.

Now let f̂ = (f̂ i1...iq) ∈ ST q(LM). Then the associated n-symplectic Hamiltonian

operator [[Xf̂ ]] is determined by the n-symplectic structure equation 3

df̂ i1...iq = −q!Xf̂
(i1...iq−1 dθiq) . (2.10)

where the round brackets around superscripts denote symmetrization over the inclosed

indices. This equations determines an equivalence class [[Xf̂ ]] of (n+q−2
q−1 ) vector fields

(Xf̂
i1...iq−1), and the explicit local coordinate form of a representative of an equivalence

class of vector fields is given in (A.9) below. The n-symplectic Hamiltonian operators

turn out to be equivalence classes of vector fields because the symmetrization of

the indices in (2.10) introduces a certain degeneracy (cf. appendix equations (A.7)

and (A.10)). Nontheless, one can define a bracket operation { , } : ST q(LM) ×

ST r(LM) → ST q+r−1(LM) by the formula

{f̂ , ĝ}i1i2...iq+r−1 = q!Xf̂
(i1i2...iq−1

(
ĝiqiq+1...iq+r−1)

)
(2.11)

for f̂ ∈ ST q(LM) and ĝ ∈ ST r(LM). In this formula (Xf̂
i1i2...iq−1) is any represen-

tative of the equivalence class [[Xf̂ ]]. The bracket so defined is easily shown to be

independent of the choice of representatives and has all the properties of a Poisson

bracket. In particular the bracket acts as a derivation on the associative algebra

(ST,⊗s).

Theorem 2.1 The space ST of symmetric tensorial functions on LM is a Poisson

algebra with respect to the n-symplectic bracket { , } defined in (2.11).

One may now define a bracket on elements of SX (M) on M as follows. For

f ∈ SX q(M), g ∈ SX r(M) define (f, g) to be the unique element of SX q+r−1(M)

3This equation is the n-symplectic generalization of the structure equation df = −Xf ω on a

symplectic manifold (M,ω) for f ∈ C∞(M).

9



determined by ̂(f, g) = {f̂ , ĝ} (2.12)

It is known [15] that this bracket is the Schouten-Nijenhuis bracket of f and

g. Moreover, in [15] it is shown that (ST, { , }) is a proper sub-algebra of the full

n-symplectic Poisson algebra of symmetric tensor-valued functions on LM .

We have the result that the Schouten-Nijenhuis bracket for symmetric contravari-

ant tensor fields on a manifold is both symplectic and n-symplectic, as it can be

defined by both structures. However, as mentioned above, it does not seem possi-

ble to define the Schouten-Nijenhuis bracket for anti-symmetric contravariant tensor

fields in terms of the symplectic structure on T ∗M . On the otherhand, we now show

that the Schouten-Nijenhuis bracket [ , ]
S/N

is also n-symplectic.

Let f̂ = (f̂ i1...iq) ∈ AT q(LM). Then the associated n-symplectic Hamiltonian

operator [[Xf̂ ]] is determined by the n-symplectic structure equation

df̂ i1...iq = −q!Xf̂
[i1...iq−1 dθiq ] . (2.13)

where the square brackets around indices denote anti-symmetrization over the en-

cloded indices. This equation determines an equivalence class [[Xf̂ ]] of ( n
q−1) vector

fields (Xf̂
i1...iq−1), and the explicit local coordinate form of an equivalence class of vec-

tor fields is given in (A.14) below. These Hamiltonian operators again turn out to be

equivalence classes of vector fields because the anti-symmetrization of the indices in

(2.13) also introduces a degeneracy (cf. appendix equations (A.12) and (A.15)). As in

the symmetric case one can define a bracket operation { , } : AT q(LM)×AT r(LM) →

AT q+r−1(LM) by the formula

{f̂ , ĝ}i1i2...iq+r−1 = q!Xf̂
[i1i2...iq−1

(
ĝiqiq+1...iq+r−1]

)
(2.14)

for f̂ ∈ AT q(LM) and ĝ ∈ AT r(LM). In this formula (Xf̂
i1i2...iq−1) is any representa-

tive of the equivalence class [[Xf̂ ]]. The bracket so defined is easily shown [15] to be

independent of the choice of representatives.
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Theorem 2.2 Let f̂ ∈ AT p(LM), ĝ ∈ AT q(LM), and ĥ ∈ AT r(LM). Then the

bracket operation defined in (2.14) has the following properties:

(a) {f̂ , ĝ} = −(−1)(p−1)(q−1){ĝ, f̂}

(b) 0 = (−1)(p−1)(r−1){ f̂ , {ĝ, ĥ}}+ (−1)(p−1)(q−1){ ĝ, {ĥ, f̂}}

+(−1)(q−1)(r−1){ĥ, {f̂ , ĝ}}

(c) {f̂ , ĝ ⊗a ĥ} = {f̂ , ĝ} ⊗a ĥ + (−1)(p−1)(q)ĝ ⊗a {f̂ , ĥ} (2.15)

Remark The space AT is the direct sum AT = ⊕∞
p=1AT p(LM) of the rank p anti-

symmetric tensor-valued tensorial functions on LM . We assign the degree |f̂ | of an

element f̂ ∈ AT p(LM) as follows:

|f̂ | =
{

0 if p is odd
1 if p is even

(2.16)

With this grading Theorem 2.2 shows that (AT, { , }) is a Z2 graded Lie algebra with

the bracket acting as a graded derivation on (AT,⊗a). Hence we have the following

theorem.

Theorem 2.3 The space AT of anti-symmetric tensorial functions on LM is a

graded Poisson algebra with respect to the n-symplectic bracket { , } defined in (2.14).

One may now define a bracket on elements of AX (M) on M as follows. For

f ∈ AX q(M), g ∈ AX r(M) define [f, g] to be the unique element of AX q+r−1(M)

determined by ̂[f, g] = {f̂ , ĝ} (2.17)

It is known [15] that this bracket is, up to a sign, the Schouten-Nijenhuis

bracket [f, g]
S/N

of f and g. Specifically, we have the following theorem.
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Theorem 2.4 Let f ∈ AX q(M) and g ∈ AX r(M). Then the Schouten-Nijenhuis

bracket [f, g]
S/N

and the bracket [f, g] defined above in (2.17) by the n-symplectic

structure on LM are related by

[f, g] = (−)|f |[f, g]
S/N

(2.18)

Remark This sign difference is simply a consequence of the different orderings

of the anti-symmetric indices in the original definition given by Nijenhuis [14] and

the definition (2.14), and either bracket can be redefined to absorb this factor. For

example, if { , } in (2.14) is replaced with a new bracket { , }0 defined by

{f̂ , ĝ}
i1i2...iq+r−1

0 = (−1)q−1q!Xf̂
[i1i2...iq−1

(
ĝiqiq+1...iq+r−1]

)
(2.19)

then the bracket induced on M by using { , }0 on the right-hand-side in (2.17), and

the Schouten-Nijenhuis bracket [ , ]
S/N

coincide. We note that Michor [13] also found

it more natural to define the Schouten-Nijenhuis bracket for anti-symmetric fields

with a sign that is opposite from the sign in the original definition [14].

3 Hamiltonian Operators

In order to discuss the n-symplectic Hamiltonian operators efficiently, it is convenient

to use a multi-index notation. In the following we let Iq = i1 . . . iq−1 and Jr =

j1 . . . jr−1 for q, r ≥ 1. Then we can use the notation XIq = X i1...iq−1 to denote

the individual vector fields that are contained in a set of vector fields (X i1...iq−1). In

particular, we denote the equivalence classes of vector fields determined by f̂ ∈ ST q

and ĝ ∈ ST r by [[Xf̂ ]] ≡ [[X
Iq

f̂
]] and [[Xĝ]] ≡ [[XJr

ĝ ]], respectively. In addition we denote

by HO(ST q) the vector space of Hamiltonian operators [[Xf̂ ]] for f̂ ∈ ST q, and denote

the direct sum of the vector spaces HO(ST q) by HO(ST ). Similarly, HO(AT q) will

denote the space of n-symplectic Hamiltonian operators [[Xf̂ ]] for f̂ ∈ AT q, and

HO(AT ) will denote the direct sum of the vector spaces HO(AT q).
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Define a bracket operation [ , ] : HO(ST q)×HO(ST r) → HO(ST q+r−1) by

[ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] =

(
[Xf̂

(Iq , Xĝ
Jr)]

)
(3.20)

where the bracket on the right-hand-side is the ordinary Lie bracket of vector fields

calculated using arbitrary representatives, and the indices have been symmetrized.

One shows that for any set of representatives (Xf̂
Iq) of [[Xf̂ ]],

q! r!

(q + r − 1)!

(
[Xf̂

(Iq , Xĝ
Jr)]

)
∈ [[X{f̂ ,ĝ}]] (3.21)

Thus the bracket [ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] is well-defined, and we write

[ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] =

(q + r − 1)!

q! r!
[[X̂{f̂ ,ĝ}]] . (3.22)

Moreover, it is known [15] that the bracket defined in (3.20) is anti-symmetric and

satisfies the Jacobi identity.

Theorem 3.1 The vector space HO(ST ) of n-symplectic Hamiltonian operators (equiv-

alence classes of Hamiltonian vector fields) on LM is a Lie algebra with respect to

the bracket defined in (3.20).

There is a parallel development for the Hamiltonian operators defined by the

anti-symmetric tensor-valued functions on LM . Define a bracket operation [ , ] :

HO(AT q)×HO(AT r) → HO(AT q+r−1) by

[ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] =

(
[Xf̂

[Iq , Xĝ
Jr]]
)

(3.23)

where the bracket on the right-hand-side is the ordinary Lie bracket of vector fields cal-

culated using arbitrary representatives, and the indices have been anti-symmetrized.

As in the symmetric case one shows that for any set of representatives (Xf̂
Iq) of [[Xf̂ ]],

q! r!

(q + r − 1)!

(
[Xf̂

(Iq , Xĝ
Jr)]

)
∈ [[X{f̂ ,ĝ}]] (3.24)
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Thus the bracket [ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] is also well-defined, and as in (3.22)we write

[ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] =

(q + r − 1)!

q! r!
[[X̂{f̂ ,ĝ}]] . (3.25)

As one would expect the algebraic properties of this bracket mirror the properties

listed in Theorem 2.2 above for the n-symplectic bracket of anti-symmetric tensor-

valued functions.

Theorem 3.2 Let f̂ ∈ AT p(LM), ĝ ∈ AT q(LM), and ĥ ∈ AT r(LM), and let ˆ[[Xf̂ ]],

ˆ[[Xĝ]] and ˆ[[Xĥ]] denote the corresponding n-symplectic Hamiltonian operators. Then

the bracket operation defined in (3.23) has the following properties:

(a) [ ˆ[[Xf̂ ]],
ˆ[[Xĝ]]] = −(−1)(p−1)(q−1)[ ˆ[[Xĝ]], ˆ[[Xf̂ ]]]

(b) 0 = (−1)(p−1)(r−1)[ ˆ[[Xf̂ ]], [
ˆ[[Xĝ]], ˆ[[Xĥ]]]] + (−1)(p−1)(q−1)[ ˆ[[Xĝ]], [ ˆ[[Xĥ]],

ˆ[[Xf̂ ]]]]

+(−1)(q−1)(r−1)[ ˆ[[Xĥ]],
ˆ[[Xf̂ ]],

ˆ[[Xĝ]]]] (3.26)

These properties of the n-symplectic bracket for the Hamiltonian operators cor-

responding to elements of AT yield the following theorem.

Theorem 3.3 The vector space HO(AT ) of n-symplectic Hamiltonian operators (equiv-

alence classes of Hamiltonian vector fields) on LM is a Z2 graded Lie algebra with

respect to the bracket defined in (3.23).

The point to be emphasized here is that the Hamiltonian operators for the Poisson

algebra of symmetric and anti-symmetric tensorial functions on LM are equivalence

classes of sets of vector fields, rather than sets of vector fields. This is a consequence

of the symmetrization and anti-symmetrizations of the indices in the structure equa-

tions (2.10) and (2.13). This fact is also related to the observation [14] that the local

coordinate formulas for the Schouten-Nijenhuis brackets are invariant under the sub-

stitution ∂i −→ ∇i mentioned earlier. This relationship follows from the following

theorem.
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Theorem 3.4 Let Bi, i = 1, 2, . . . , n be the standard horizontal vector fields of a

symmetric linear connection 1-form ω on the bundle of linear frames LM of an n-

dimensional manifold M . Let Ei∗
j , i, j = 1, 2, . . . , n denote the fundamental vertical

vector fields on LM defined by the standard basis (Ei
j) of gl(n,R). For f̂ = (f̂ iIq) ≡

(f̂ i1...iq) ∈ ST q(LM) define a set of vector fields

X̃f̂

Iq
=

1

(q − 1)!

(
f̂ jIq

)
Bj +

1

q!

(
Dkf̂

Iqj
)
Ek∗

j (3.27)

where Dk = Bk Dω and Dω denotes exterior covariant differentiation with respect

to ω. Then (
X̃f̂

Iq
)
∈ [[Xf̂ ]] (3.28)

Proof According to appendix equation (A.9) the local coordinate form of a repre-

sentative of [[Xf̂ ]] can be given by specifying functions T Iqb
a that satisfy (A.10). Let ω

be a torsion-free connection 1-form on LM . Then in the local canonical coordinates

(xi, πj
k) defined in appendix equation (A.2) the associated standard horizontal vector

fields defined by ω take the form

Bj = (π−1)k
j

(
∂

∂xk
+ Γl

kaπ
i
l

∂

∂πi
a

)
(3.29)

where the (Γl
ka) are the local coordinate components of the connection ω. In addition

the local coordinate formulas for the fundamental vertical vector fields on LM are

Ei∗
j = −πi

k

∂

∂πj
k

(3.30)

Substituting these expressions into (3.27) one shows that (3.27) reduces to the form

given in (A.9) where the functions T Iqb
a satisfy (A.10).

We have the result that each choice of a torsion-free linear connection ω on LM

yields a globally defined Hamiltonian operator for each f̂ ∈ ST , and hence selects a

subspace HOω(ST ) ⊂ HO(ST ). The question remains whether or not HOω(ST ) is

15



a sub-algebra under the bracket defined above in (3.23). While (3.24) clearly is still

satisfied, a direct calculation shows that

[X̃f̂ , X̃ĝ] 6∝ X̃{f̂ ,ĝ} (3.31)

The reason is that while the vertical component of X̃{f̂ ,ĝ} is clearly symmetric (see

(3.27)), the vertical component of [X̃f̂ , X̃ĝ] is not symmetric. Fortunately, it is possible

to modify the definition (3.20) so that the bracket closes on the set HOω(ST ) by

enforcing symmetry on the vertical components. This can be done globally on LM

since the n components θi of the soldering 1-form and the n2 components ωi
j of a

connection 1-form ω together define a global basis of 1-forms on LM .

Definition 3.5 For f̂ ∈ ST q(LM) and ĝ ∈ ST r(LM), let X̃f̂ = (X̃
Iq

f̂
) and X̃ĝ =

(X̃Jr
ĝ ) be as in (3.27) above for some torsion-free connection 1-form ω = (ωi

j). Define

a bracket operation [ , ]? : HOω(ST q)×HOω(ST r) → HOω(ST q+r−1) by [X̃f̂ , X̃ĝ]? =

(
(
[X̃f̂ , X̃ĝ]

IqJr
?

)
, where

[X̃f̂ , X̃ĝ]
IqJr
? =

(
[X̃f̂ , X̃ĝ]

IqJr θi
)
Bi +

(
[X̃f̂ , X̃ĝ]

(IqJr ω
i)
j

)
Ej∗

i (3.32)

and where the bracket on the right-hand side is the bracket defined in (3.20).

Remark The symmetrization of the indices in the vertical component is the only

difference between this new bracket and the bracket defined in (3.20). The tedious

but straigtforward proof of the following theorem is omitted.

Theorem 3.6 The bracket [ , ]? defined above in (3.32) satisfies

[X̃f̂ , X̃ĝ]? =
(q + r − 1)!

q!r!
X̃{f̂ ,ĝ} (3.33)

Corollary 3.7 The space (HOω(ST ), [ , ]?) is a Lie algebra.

For completeness, we quote without proof the analogous results for the Hamilto-

nian operators for anti-symmetric tensorial functions on LM .
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Theorem 3.8 Let Bi, i = 1, 2, . . . , n be the standard horizontal vector fields of a

symmetric linear connection 1-form ω on the bundle of linear frames LM of an n-

dimensional manifold M . Let Ei∗
j , i, j = 1, 2, . . . , n denote the fundamental vertical

vector fields on LM defined by the standard basis (Ei
j) of gl(n,R). For f̂ = (f̂ iIq) ≡

(f̂ i1...iq) ∈ AT q(LM) define a set of vector fields

X̃f̂

Iq
=

1

(q − 1)!

(
f̂ jIq

)
Bj +

1

q!

(
Dkf̂

Iqj
)
Ek∗

j (3.34)

where Dk = Bk Dω and Dω denotes exterior covariant differentiation with respect

to ω. Then (
X̃f̂

Iq
)
∈ [[Xf̂ ]] (3.35)

Definition 3.9 For f̂ ∈ AT q(LM) and ĝ ∈ AT r(LM), let X̃f̂ = (X̃
Iq

f̂
) and X̃ĝ =

(X̃Jr
ĝ ) be as in (3.34) above for some torsion-free connection 1-form ω = (ωi

j). Define

a bracket operation [ , ]? : HOω(AT q)×HOω(AT r) → HOω(AT q+r−1) by [X̃f̂ , X̃ĝ]? =

(
(
[X̃f̂ , X̃ĝ]

IqJr
?

)
, where

[X̃f̂ , X̃ĝ]
IqJr
? =

(
[X̃f̂ , X̃ĝ]

IqJr θi
)
Bi +

(
[X̃f̂ , X̃ĝ]

[IqJr ω
i]
j

)
Ej∗

i (3.36)

and where the bracket on the right-hand side is the bracket defined in (3.23).

Remark The anti-symmetrization of the indices in the vertical component is the

only difference between this new bracket and the bracket defined in (3.23).

Theorem 3.10 The bracket [ , ]? defined above (3.36) satisfies

[X̃f̂ , X̃ĝ]? =
(q + r − 1)!

q!r!
X̃{f̂ ,ĝ} (3.37)

Corollary 3.11 The space (HOω(AT ), [ , ]?) is a graded Lie algebra.
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4 Applications: The free observer system in space-

time.

We have just seen that for each choice of a torsion-free linear connection one ob-

tains unique representatives of the equivalence classes of Hamiltonian operators for

both symmetric and anti-symmetric tensorial functions on LM . We will refer to this

freedom to choose a symmetric connection as an “n-symplectic gauge freedom”, and

will refer to a choice of symmetric connection as a “choice of n-symplectic gauge”.

In order to gain geometrical insight into the meaning of the n-symplectic gauge we

apply the theory to the simpliest of all possible systems, namely the free observer

system in a 4-dimensional spacetime manifold M with metric tensor field ~g.

We first recall that the contravariant form of the metric tensor defines on T ∗M

the free particle Hamiltonian H = 1
2m

g̃, where m is the mass of the particle and g̃ is

the function on T ∗M defined by ~g as in (1.1). The integral curves of the Hamiltonian

vector field defined byH project to the geodesics of the Levi-Civita connection defined

by the metric tensor. The free observer system alluded to above is the observable

defined on LM by ~g, and is the analogue of the free particle Hamiltonian.

The generalized Hamiltonian of the free observer system is thus the symmetric

observable Ĥ = ĝ where ĝ = (ĝij) ∈ ST 2(LM) is the tensorial function defined on LM

as in (2.7). (For simplicity we have dropped the multiplicative constant 1
2m

.) The n-

symplectic structure equation (2.10) determines the Hamiltonian operator [[Xĝ]], each

member of which is an Rn-valued vector field on LM . In order to find integrals of this

Hamiltonian operator we select an n-symplectic gauge, namely an arbitrary torsion-

free linear connection ω on LM . Then by Theorem (3.4) we obtain the following

unique Hamiltonian operator for ĝ:

X̃ĝ

i
= ĝijBj +

1

2

(
Dkĝ

ij
)
Ek∗

j , i = 0, 1, 2, 3 (4.38)

18



In this specific case we use standard notation to rewrite this equation as

X̃ĝ

i
= ĝijBj +

1

2

(
Q̂k

ij
)
Ek∗

j , i = 0, 1, 2, 3 (4.39)

where Q̂k
ij = Dkĝ

ij is the non-metricity [19] of the n-symplectic gauge ω. Let us

now find the integral curve of X̃ĝ

0
that starts at the initial frame u0 ∈ LM , where u0

is such that X̃ĝ

0
(u0) projects to a time-like vector at π(u0). Substituting (3.29) and

(3.30) into (4.39) we obtain the following system of equations for the integral curves

of X̃ĝ

0
in the local canonical coordinates defined in the appendix:

ẋb = gabπ0
a

π̇j
a = −1

2

(
Qa

bl − 2Γl
akg

bk
)
π0

bπ
j
l

(4.40)

From the definition of the generalized momentum coordinates πi
j given in appendix

equation (A.2) we see that the second of the above equations is a transport equation

for a coframe rather than frame.

This system of equations splits into the following two sets of equations:

ẋb = gabπ0
a

π̇0
a = −1

2

(
Qa

bl − 2Γl
akg

bk
)
π0

bπ
0
l

(4.41)

and, for α = 1, 2, 3,

π̇α
a = −1

2

(
Qa

bl − 2Γl
akg

bk
)
π0

bπ
α
l (4.42)

Consider first the coupled system (4.41). Using the relationship [19] between the

connection coefficients Γl
ak, the Christoffel symbols {jk

i}, and the non-metricity Qa
bl,

one finds that the non-metricity and the n-symplectic gauge Γl
ak cancel out, and that

(4.41) reduces to the equation for the geodesic of the Levi-Civita connection, namely

d2xi

dt2
+ {jk

i}dxj

dt

dxk

dt
= 0 (4.43)

This part of the information contained in the system (4.40) is therefore n-symplectic

gauge-invariant and agrees with the corresponding result from the cotangent bundle.

That this must be so can be seen as follows. The structure equation for ĝij is

dĝij = −2Xĝ
(i dθj) (4.44)
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Setting i = j = 0 we obtain an equation for Xĝ
0, namely

dĝ00 = −Xĝ
0 dθ0 (4.45)

which is essentially the LM form of Hamiltonian’s equations on the cotangent bundle,

based on the “kinetic energy Hamiltonian” ĝ00 = gij(x)π0
i π

0
j , with π0

i playing the role

of the momentum coordinate pi.

Next consider the remaining equations (4.42) which determines the transport of

the spatial coframe along the geodesic, and which we will refer to as the triad transport

law. Substituting π0
a = gabẋ

b from the first of equations (4.41), and again using the

relationship between the connection coefficients, the Christoffel symbols of the metric

tensor, and the non-metricity, one can reduce this equation to the form

Dπα
a

Ds
=

1

2

(
Q.

k
l
.
.
a −Ql

.ak

)
ẋkπα

l (4.46)

where the covariant derivative on the left-hand-side is taken with respect to the Levi-

Civita connection defined by the metric tensor. We consider two cases:

1. If we choose the Levi-Civita connection for the n-symplectic gauge, then Qa
jk ≡

0, and the triad is parallel transported along the geodesic. Since the unit tan-

gent is also parallel transported along the geodesic, this case corresponds to

the true free observer in spacetime, namely a freely falling (trajectory is a

non-accelerating geodesic), non-rotating (triad is parallel transported along a

geodesic) observer.

2. If we choose for the n-symplectic gauge an arbitrary torsion-free connection that

is not the unique Levi-Civita connection of ~g, then Qa
jk 6= 0, and the triad is

no longer parallel transported along the geodesic. Since the unit tangent is still

parallel transported along the geodesic, this case corresponds to a freely falling

(trajectory is a non-accelerating geodesic) observer who three space is subject

to the forces given on the right-hand-side of (4.46). These forces includes, but

are not restricted to, rotations.

20



5 Conclusions

In this paper we have shown that the Schouten-Nijenhuis brackets of contravariant

tensor fields on a manifold M have a natural and fundamental geometrical inter-

pretation in terms of n-symplectic geometry on the bundle of linear frames LM of

the manifold M . From an abstract algebraic point of view one might prefer the ax-

iomatic, base manifold definition of the Schouten-Nijenhuis brackets. For example,

for the anti-symmetric contravariant tensor fields we have:

Definition: (See [13, 17]) The Schouten-Nijenhuis bracket of anti-symmetric

contravariant tensor fields on a manifold M is the unique R-bilinear map-

ping

[ , ] : AX (M)× AX (M) → AX (M), which

1. extends the Lie bracket of vector fields,

2. satisfies [X, f ] = LX(f) for all vector fields X and all smooth func-

tions f on M ,

3. is graded antisymmetric,

4. is a graded biderivation of AX (M).

However, this abstract definition does not lend itself easily to geometrical analysis.

On the otherhand we have seen that one may define the Schouten-Nijenhuis bracket

for anti-symmetric contravariant tensor fields on M geometrically on LM as follows:

Definition: For f ∈ AX q(M), g ∈ AX r(M) define [f, g] to be the unique

element of AX q+r−1(M) determined by

̂[f, g] = {f̂ , ĝ} (5.47)

where the bracket on the right-hand-side is the n-symplectic bracket de-

fined in equation (2.13), and f̂ and ĝ are the tensorial functions on LM

uniquely determined by f and g, respectively.
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Since the n-symplectic bracket is defined in (2.14) in terms of the n-symplectic Hamil-

tonian operators, which themselves are equivalence classes of sets of vector fields, this

definition of the Schouten-Nijenhuis bracket [ , ]
S/N

is clearly more geometrical, and

lends itself to geometrical analysis.

There is a strong parallel between these two definitions of the Schouten-Nijenhuis

brackets and two definitions of linear connections on a manifold M , namely the ax-

iomatic Koszul definition on the base manifold M , and the geometrical definition of

a linear connection on LM . We recall that in the axiomatic approach one defines a

linear connection on M as an operator ∇ with a certain set of properties, much like

the first definition given above for the Schouten-Nijenhuis bracket [ , ]
S/N

. On the

otherhand, just as we have defined the Schouten-Nijenhuis brackets on LM one may

define [8] a linear connection geometrically on LM as a horizontal distribution (or,

equivalently, as a Lie-algebra-valued connection 1-form). The axiomatic and frame

bundle definitions of linear connections are equivalent, as are the two definitions of

the Schouten-Nijenhuis brackets given above. However, it is clear that for geometrical

analysis, the LM version of the definition of a linear connection for M is the supe-

rior definition. The frame bundle version of linear connections is also clearly more

fundamental, as it is the approach taken in foundational studies of differential geom-

etry 4. It is our assertion that the frame bundle version of the Schouten-Nijenhuis

brackets is also more geometrical and fundamental than the base manifold version of

the Schouten-Nijenhuis brackets. We have already demonstrated in Sections 3 and 4

the geometrical utility of the n-symplectic version of the Schouten-Nijenhuis brack-

ets. That the frame bundle version of the Schouten-Nijenhuis brackets is also more

fundamental can be demonstrated by pursuing the above analogy a little further.

We recall that a fundamental feature of the frame bundle definition of a linear

connection is that once such a connection is specified, one may use that connection to

define covariant differentiation of tensor fields on M in terms of the exterior covariant

4See, for example, [8, 1, 11]
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differentiation of the associated tensorial fields on LM . In the construction one makes

essential use of the fact that the various tensor bundles may be considered as vector

bundles associated to LM . Alternatively, one may use the connection on LM to

induce a connection for covariant differentiation of sections of the tensor bundles [8],

thereby recovering the axiomatic Koszul definition of a connection. The point to be

stressed here is that all features of linear connections on the tensor bundles flow from

the basic, unifying definition of a linear connection on LM .

We point out that the n-symplectic structure on LM also plays a basic, unifying

role for the various symplectic-type theories on the appropriate tensor bundles. In [16]

it was argued that the canonical 1-form ϑ on the cotangent bundle of a manifold M

is induced from the n-symplectic structure on LM , and that in fact all features of the

symplectic geometry of tensorial observables on T ∗M are induced from corresponding

structures on LM . Hence the symplectic geometry for classical particle mechanics is

induced from the n-symplectic geometry on LM . More recently [4] it was pointed

out that the n-symplectic structure on LM induces a “canonical p-form” on each of

the form bundles ΛpM , 1 ≤ p ≤ n. As a special case one may suppose that M → N

is itself a vector bundle over a manifold N , with dim(N)=k. The previous theorem

asserts [4, 12] that the n-symplectic structure on LM induces a canonical k-form

on the bundle of k-forms ΛkM . It has been shown [6, 7] that a certain subbundle

Z of ΛkM is isomorphic with the bundle of affine cojets of sections of M → N ,

and that this subbundle Z is the appropriate phase space for a field theory in which

the sections of M → N are the fields of the theory. In particular, Z supports a

canonical k-form, the so-called “multisymplectic k-form”. In [4, 12] it is shown that

this multisymplectic form is in fact the restriction to the subbundle Z of the form on

ΛkM induced by the n-symplectic structure on LM . Hence n-symplectic geometry on

LM not only induces the canonical symplectic 1-form for classical particle mechanics,

but it also induces the canonical multisymplectic k-form for classical field theory. Just

as the basic notions about covariant differentiation of tensor fields can be traced back
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to, and are induced by, a linear connection defined on LM , the basic features of

symplectic and multisymplectic geometry on the form bundles can be traced back to,

and are induced by, the n-symplectic geometry on LM . These facts clearly establish

the fundamental nature of n-symplectic geometry on frame bundles.

Appendix: Some facts about n-symplectic geometry

The principal fiber bundle π : LM −→ M of linear frames of an n-dimensional

manifold M is the set of pairs (m, ei) where (ei) , i = 1, 2, . . . , n is a linear frame at

m ∈ M . The dimension of LM is the even number n(n + 1), and the general linear

group GL(n) acts on LM on the right by

(m, ei) · g = (m, eig
i
j) (A.1)

for each g = (gi
j) ∈ GL(n). Let (xi) be a coordinate chart on U ⊂ M . Define

coordinates (xi, πj
k) on Û = π−1(U) ⊂ LM by

xi(m, ei) = xi(m)

πj
k(m, ei) = ej( ∂

∂xk |m)
(A.2)

where (ei) denotes the coframe dual to (ei). Moreover in (A.2) I follow standard

conventions and write xi in place of xi ◦ π.

Let (ri), i = 1, 2, . . . , n, denote the standard basis of Rn. Then the Rn-valued

soldering one-form θ = θiri on LM may be defined by

θ(Xu) = u−1(dπ(Xu)) , Xu ∈ TuLM (A.3)

where u = (m, ei) ∈ LM is viewed as the non-singular linear map u : Rn → Tπ(u)M

given by u(ξiri) = ξiei. In the local coordinates (xi, πj
k) the soldering 1-form θ take

the form

θ = (πi
j dxj)ri . (A.4)
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Because this form is so similar to the form ϑ = pj dxj for the canonical 1-form on

T ∗M in local canonical coordinates, we refer to the coordinates (xi, πj
k) as canonical

coordinates on LM . It is not difficult to show that the vector-valued 2-form dθ is

non-degenerate in the sense that

X dθ = 0 ⇐⇒ X = 0 (A.5)

An element f̂ ∈ ST q(LM) determines [15] an equivalence classes [[Xf̂ ]] of (n+q−2
q−1 )

vector fields [[X
i1...iq−1

f̂
]] via the n-symplectic structure equation

df̂ i1...Iq = −q!X
(i1...iq−1

f̂
dθIq) (A.6)

where round brackets on indices denotes symmetrization. Note that although dθ is

nondegenerate in the sense of (A.5), because of the symmetrization in (A.6) the non-

degeneracy is lost. For a given f̂ ∈ ST q equation (A.6) only determines the vector

fields X
i1...iq−1

f̂
up to addition of vector fields Y i1...iq−1 satisfying the kernel equation

Y (i1...iq−1 dθIq) = 0 . (A.7)

If a set of vector fields Y i1...iq−1 satisfies (A.7) then each vector field Y i1...iq−1 must be

vertical. For a given f̂ ∈ ST q equation (A.6) thus determines an equivalence class of

(⊗s)
q−1Rn-valued Hamiltonian vector fields ([[X

i1...iq−1

f̂
]]), where two (⊗s)

q−1Rn-valued

vector fields are equivalent if their difference satisfies equation (A.7).

An element f̂ = (f̂ i1i2...Iq) ∈ ST q has the local canonical coordinate representation

f̂ i1i2...Iq = f j1j2...jq(x)πi1
j1π

i2
j2 · · ·π

Iq

jq
. (A.8)

The associated equivalence classes of Hamiltonian vector fields [[X
i1i2...iq−1

f̂
]] determined

by equation (A.6) have the local coordinate representations

Xf̂
i1i2...iq−1 =

(
1

(q−1)!
f j1j2...jq−1k(x) ∂

∂xk

− 1
q!

(
∂fj1j2...jq

∂xa πb
jq

+ T
j1j2...ij−1b
a

)
∂

∂πb
a

)
πi1

j1π
i2
j2 · · ·π

iq−1

jq−1

(A.9)
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where the functions T
i1i2...iq−1b
a must satisfy

T (i1i2...iq−1b)
a = 0 (A.10)

but are otherwise arbitrary. These functions T
i1i2...iq−1b
a thus represent the undeter-

mined part of [[Xf̂ ]] for f ∈ ST q(LM).

An element f̂ ∈ AT q(LM) determines [15] an equivalence classes [[Xf̂ ]] of ( n
q−1)

vector fields [[X
i1...iq−1

f̂
]] via the n-symplectic structure equation

df̂ i1...Iq = −q!X
[i1...iq−1

f̂
dθIq ] (A.11)

where square brackets [ ] on indices denotes anti-symmetrization. The anti-symmetrization

in (A.11) again introduces a degeneracy in the determination of the Hamiltonian op-

erators.. For a given f̂ ∈ AT q equation (A.11) only determines the vector fields

X
i1...iq−1

f̂
up to addition of vector fields Y i1...iq−1 satisfying the anti-symmetric kernel

equation

Y [i1...iq−1 dθIq ] = 0 . (A.12)

If a set of vector fields Y i1...iq−1 satisfies (A.12) then each vector field Y i1...iq−1 must be

vertical. For a given f̂ ∈ AT q equation (A.11) thus determines an equivalence class of

(⊗s)
q−1Rn-valued Hamiltonian vector fields ([[X

i1...iq−1

f̂
]]), where two (⊗s)

q−1Rn-valued

vector fields are equivalent if their difference satisfies equation (A.12).

An element f̂ = (f̂ i1i2...Iq) ∈ ST q has the local canonical coordinate representation

f̂ i1i2...Iq = f j1j2...jq(x)πi1
j1π

i2
j2 · · ·π

Iq

jq
. (A.13)

The associated equivalence classes of Hamiltonian vector fields [[X
i1i2...iq−1

f̂
]] determined

by equation (A.11) have the local coordinate representations

Xf̂
i1i2...iq−1 =

(
1

(q−1)!
f j1j2...jq−1k(x) ∂

∂xk

− 1
q!

(
∂fj1j2...jq

∂xa πb
jq

+ T
j1j2...ij−1b
a

)
∂

∂πb
a

)
πi1

j1π
i2
j2 · · ·π

iq−1

jq−1

(A.14)

where the functions T
i1i2...iq−1b
a must now satisfy

T [i1i2...iq−1b]
a = 0 (A.15)
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but are otherwise arbitrary. These functions T
i1i2...iq−1b
a thus represent the undeter-

mined part of [[Xf̂ ]] for f ∈ ST q(LM).
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