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Abstract

n-symplectic geometry on the adapted frame bundle λ : LπE → E of an n = (m + k)-dimensional

fiber bundle π : E → M is used to set up an algebra of observables for covariant Lagrangian field

theories. Using the principle bundle ρ : LπE → J1π we lift a Lagrangian L : J1π → R to a Lagrangian

L := ρ∗(L) : LπE → R, and then use L to define a ”modified n-symplectic potential” θ̂L on LπE, the

Cartan-Hamilton-Poincaré (CHP) Rn-valued 1-form. If the lifted Lagrangian is non-zero then (LπE, dθ̂L)

is an n-symplectic manifold. To characterize the observables we define a lifted Legendre transformation

φL from LπE into LE. The image QL := φL(LπE) is a submanifold of LE, and (QL, d(θ̂|QL)) is shown

to be an n-symplectic manifold. We prove the theorem that θ̂L = φ∗L(θ|QL), and pull back the reduced

canonical n-symplectic geometry on QL to LπE to define the algebras of observables on the n-symplectic

manifold (LπE, dθ̂L). To find the reduced n-symplectic algebra on QL we set up the equations of n-

symplectic reduction, and apply the general theory to the model of a k-tuple of massless scalar fields

on Minkowski spacetime. The formalism set forth in this paper lays the ground work for a geometric

quantization theory of fields.
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I Introduction

In order to set up a quantization scheme for Lagrangian field theories modeled on the Kostant-Souriau theory

of geometric quantization [1, 2] one needs to find an analogue of the algebra of observables C∞(M,R) under

Poisson bracket and the isomorphic algebra of connection preserving vector fields on a line bundle L× → M

over a symplectic manifold (M,ω). In this paper we construct an algebra of observables for covariant

Lagrangian field theories using the n-symplectic theory [3, 4, 5, 6, 7, 8, 9] as the engine for the construction.

In a companion paper [10] the algebra constructed here is used as the basis for setting up a Kostant-Souriau

geometric quantization scheme for covariant Lagrangian field theories. For other geometric approaches to

quantization of fields see the work of Kanatchikov [11] who bases his work on the polysymplectic geometry

of Günther [12], and also Hrabak [13], whose work is based on the multisymplectic geometry of Gotay et

al. [14].

Let L : J1π → R be a field Lagrangian for a section of an n = m+k dimensional fiber bundle π : E → M

over the m dimensional manifold M . To use the n-symplectic theory to construct an algebra of observables

we lift the Lagrangian on J1π to the bundle of adapted linear frames LπE, the subbundle of LE that

arises [15, 8, 9] due to the fiber structure of E → M . (Throughout the paper we use the index range

convention i, j = 1, 2, . . . ,m, A,B = m+1,m+2, . . . ,m+k, and α, β = 1, 2, . . . ,m+k.) A point in LπE is

a triple (e, ei, eA) where e ∈ E and (ei, eA) is a linear frame for the tangent space to E at e in which the last k

vectors (eA) are vertical on π : E → M . The lifting of L : J1π → R to LπE is natural since LπE is known [9]

to be an H = GL(m)×GL(k) principal fiber bundle over J1π. If ρ : LπE → J1π then we put L := ρ∗(L).

Using a lifted Legendre transformation we construct the Cartan-Hamilton-Poincaré (CHP) 1-forms θ̂L first

introduced in reference [9], and prove the theorem that (LπE, dθ̂L) is an n-symplectic manifold provided the

Lagrangian is non-zero. The observables of the theory are then the ⊗pRn-valued functions f̂ on LπE that

satisfy the n-symplectic structure equation

df̂ = − 1
p!

Xf̂ dθ̂L (I.1)

for some ⊗p−1Rn-valued vector field X̂f̂ . (Here denotes a tensor product in the range and interior

product in the domain.) We will show that the set of allowable observables carries a natural graded Poisson

algebra structure, and that the set of all corresponding vector-valued Hamiltonian vector fields X̂f̂ has a

natural Lie algebra structure as well.

The plan of the paper is the following. In section II we develop the algebraic structure that is defined by an

n-symplectic structure on an N -dimensional manifold P . Such a structure is defined by an Rn-valued 2-form

ω̂ that is both closed and non-degenerate. We will refer to (P, ω̂) as an n-symplectic manifold. To illustrate

the theory we will carry along the canonical example of the bundle of linear frames P = LE [3, 4, 5, 6] and its

canonically defined n-symplectic structure ω̂ = dθ̂, where θ̂ is the Rn-valued soldering 1-form. In the general

case we show that ω̂ defines a Poisson algebra SHF of ⊗p
(sym)R

n-valued functions on P , the observables

of the theory, together with a Lie algebra of vector-valued Hamiltonian vector fields. When P = LE and
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ω̂ = dθ̂ the observables are symmetric polynomials in the Rn-valued momenta π̂α with coefficients that are

constant on the fibers of λ : LE → E. The homogeneous polynomial observables in this case correspond

uniquely to symmmetric contravariant tensor fields on E, and the Poisson bracket of two such observables

on LπE corresponds [6] to the Schouten-Nijenhuis bracket [16, 17] of the corresponding tensor fields on E.

There is a corresponding development for ⊗p
(skew)R

n-valued functions on P , which turns out to be a graded

Poisson algebra. The direct sum of these two algebras is then a graded Poisson algebra.

In section III we present the relevant details of the canonical n-symplectic geometry on LE, and the

reduced subbundle of adapted linear frames LπE. In section IV we recall the bundle structure ρ : LπE → J1π

and the definition [9] of the modified soldering 1-forms on LπE, which we refer to as the Cartan-Hamilton-

Poincaré (CHP) Rn-value 1-form. The CHP 1-form is defined herein as the pull-back, under a lifted Legendre

transformation, of the canonical Rn-valued soldering 1-form on LE to LπE. We then prove the theorem

that (LπE, dθ̂L) is an n-symplectic manifold provided L is non-zero. The algebra of observables defined by

a Lagrangian is then the graded Poisson algebra defined by this n-symplectic structure.

In order to find the observables defined by a specific Lagrangian we consider in section V the image

QL ⊂ LE of LπE under the lifted Legendre transformation. To characterise the n-symplectic observables

on (QL, dθ̂) we carry out a reduction of the canonical n-symplectic geometry on LE to QL. Our method

leads to a system of PDE’s that characterize those n-symplectic observables on (LE, dθ̂) that restrict to

observables on (QL, d(θ̂|QL
)). In section VI we apply the theory to the massless n-tuple of scalar fields on

Minkowski spacetime. Section VII contains a brief summary of our results and some ideas for future work.

II n-symplectic geometry

Let P be an N -dimensional manifold, and let (r̂α) denote the standard basis of Rn, with 1 ≤ n ≤ N . We

suppose there exists on P an n-symplectic structure, namely an Rn-valued 2-form ω̂ = ωα ⊗ r̂α that

satisfies the following two conditions:

(C − 1) dωα = 0 ∀ α = 1, 2, . . . , n (II.2)

(C − 2) X ω̂ = 0 ⇔ X = 0 (II.3)

Definition II.1 The pair (P, ω̂) is an n-symplectic manifold.

Remark: In references [3, 4, 5, 6, 7, 8, 9, 15] the term n-symplectic structure refers to the two-form that is

the exterior derivative of the Rn-valued soldering 1-form on frame bundles or subbundles of frame bundles.

Günther [12] was perhaps the first to consider a manifold with a non-degenerate Rn-valued 2-form, and

he used the terms polysymplectic structure and polysymplectic manifold for the non-dengenerate 2-form and

manifold, respectively. In addition, when one adds a few extra conditions to conditions C-1 and C-2 one

arrives at a k-symplectic manifold. Specifically, if P is required to support an np-dimensional distribution V
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such that

(C − 3) N = p(n + 1)

(C − 4) ω̂|V×V = 0

then P is a k-symplectic manifold as defined by both de Leon, Salgado, et al. [19] and also by Awane [18].

To make this identification one needs to make the notational changes n −→ k and p −→ n in the above

discussion. Thus all k-symplectic manifolds are n-symplectic, but not converserly. The canonical frame

bundle example (LE, dθ̂) of an n-symplectic manifold introduced in the next paragraph is also a k-symplectic

manifold. On the other hand the important example of the adapted frame bundle LπE that is central to this

paper is n-symplectic, but not k-symplectic. The problem is that the k-symplectic dimensional requirement

N = p(n + 1) cannot be satisifed on LπE.

We will continue to use the name n-symplectic geometry for the structure in definition II.1 in order to

emphasis the geometrical and algebraic developments that our approach provides.

Remark: In this section we will carry along the canonical example P = LE where LE is the (n2 + n)-

dimensional bundle of linear frames of the n-dimensional manifold E. The bundle of frames LE supports a

canonically defined n-symplectic form ω̂ = dθ̂ where θ̂ is the Rn-valued soldering 1-form, and is defined as

follows. If X is a tangent vector to LE at u = (e, eα) then

θ̂u(X) = eα(λ∗(X))r̂α (II.4)

where (eα) denotes the coframe dual to the frame (eα). The soldering form is evidently the frame bundle

counterpart of the canonical 1-form θ on T ∗E. It has been shown [4] that much of the canonical symplectic

geometry on T ∗E can be derived from the n-symplectic geometry on LE.

II.1 Canonical coordinates

Awane [18] has proved a generalized Darboux theorem for k-symplectic geometry. Thus in the neighborhood

of each point u ∈ P one can find canonical (or Darboux) coordinates (πα
a , zb), α, β = 1, 2, . . . k and a, b =

1, 2, . . . n. With respect to such canonical coordinates ω̂ takes the form

ω̂ = (dπα
a ∧ dza)⊗ r̂α (II.5)

Hence we have the following locally defined equations:

dπα
a = − ∂

∂za
ωα , dza =

∂

∂πα
a

ωα , (Σα/ ) (II.6)

Remark: The approach used here to characterize algebras of observables requires the existence of such

canonical coordinates. From the results in [3] we know that not all functions are allowable n-symplectic
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observables, even in the canonical case of frame bundles. Thus, for example, whether or not there exist pairs

(f̂α1α2...αp , X
α1α2...αp−1

f̂
), p = 1, 2, . . . that satisfy equation (II.9) below for a general n-symplectic manifold

is an existence question, and must be demonstrated for each n-symplectic manifold. The formulas (II.6)

will provide local examples of rank 1 solutions of the n-symplectic structure equations (II.9) when either the

geometry is specialized to k = n-symplectic geometry where a Darboux theorem holds, or when canonical

coordinates are simply known to exist. Fortunately in the cases we will consider later in this paper, and in

particular on the adapted frame bundle LπE, canonical coordinates are known to exist.

Example: On the bundle of linear frames λ : LE → E one can introduce canonical coordinates in the

following way. Let (zα) be a local chart on U ⊂ E. Then on Ũ = λ−1(U) define coordinate functions

(πα
β , z̃µ) by

πα
β (u) := eα

(
∂

∂zβ

∣∣∣∣
λ(u)

)
∀ u = (e, eα) ∈ Ũ

z̃α(u) := zα(λ(u)) ∀ u ∈ Ũ

(II.7)

Following standard notational conventions we will drop the ”over tilde” on the lifted coordinates z̃α and

write simply zα for both sets of coordinates. With respect to such a coordinate system on LE the soldering

1-form θ̂ has the local coordinate expression

θ̂ = (πα
β dzβ)⊗ r̂α (II.8)

The n-symplectic 2-form dθ̂ clearly has the canonical form (II.5) in such a coordinate system.

II.2 The Symmetric Poisson Algebra Defined by ω̂

Throughout this section we let (P, ω̂) be an n-symplectic manifold as defined above. It is convenient to

introduce the multi-index notation

r̂α1α2...αn−µ
= r̂α1 ⊗s r̂α2 ⊗s · · · ⊗s r̂αn−µ

, 0 ≤ µ ≤ n− 1

In addition round brackets around indices (αβγ) denotes symmetrization over the enclosed indices.

Definition II.2 For each p ≥ 1 let SHF p denote the set of all (⊗s)pRn-valued functions f̂ = (f̂α1α2...αp) =

(f̂ (α1α2...αp)) on P that satisfy the equations

df̂α1α2...αp = − 1
p!

X
(α1α2...αp−1

f̂
ωαp) (II.9)

for some set of vector fields (Xα1α2...αp−1

f̂
). We then set

SHF = ⊕p≥1SHF p (II.10)

f̂ ∈ SHF p will be referred to as a symmetric Hamiltonian function of rank p.
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Example: The locally defined functions f̂ that satisfy (II.9) for the canonical n-symplectic manifold (LE, dθ̂)

were given in reference [3]. In particular, contrary to the situation in symplectic geometry, not all (⊗s)pRn-

valued functions on LE are compatible with equation (II.9). The p = 1, 2 cases will clarify the structure.

Let ST p(LE) denote the vector space of symmetric (⊗s)pRn-valued GL(n)-tensorial functions on LE that

correspond uniquely to symmetric rank p contravariant tensor fields on E. Similarly let C∞(E, (⊗s)pRn)

denote the set of smooth (⊗s)pRn-valued functions on LE that are constant on fibers of LE. Then

SHF 1 = T 1(LE) + C∞(E,Rn) (II.11)

SHF 2 = ST 2(LE) + T 1(LE)⊗s C∞(E,Rn) + C∞(E,Rn ⊗s Rn) (II.12)

For example, if f̂ = (f̂α) ∈ SHF 1 and f̂ = (f̂αβ) ∈ SHF 2, then in canonical coordinates (πα
β , zγ) the

functions f̂α and f̂αβ have the general forms

f̂α = Aaπα
a + Bα , f̂αβ = Aµνπα

µπβ
ν + Bµ(απβ)

µ + Cαβ (II.13)

where Aa, Bα, Aµν = A(µν), Bµν and Cµν = C(µν) are all constant on the fibers of λ : LE → E and hence

are pull-ups of functions defined on E.

Remark: The analogous results for the n-symplectic form given in (II.5) above are straight forward to work

out in canonical coordinates. For the p = 1 and p = 2 symmetric cases, one finds:

f̂α = Aaπα
a + Bα , f̂αβ = Aabπα

a πβ
b + Ba(απβ)

a + Cαβ (II.14)

where now all coefficients are functions of the coordinates za.

Remark: Although ω̂ is non-degenerate in the sense given in equation (II.3) above, because of the sym-

metrization on the right-hand-side in (II.9) the relationship between f̂ and (Xα1α2...αp−1

f̂
) is not unique unless

p = 1. Given a pair (f̂α1α2...αp , X
α1α2...αp−1

f̂
) that satisfies (II.9) one can always add to X

α1α2...αp−1

f̂
vector

fields Y α1α2...αp−1 that satisfy the kernel equation

Y (α1α2...αp−1 ω̂αp) = 0 (II.15)

to obtain a new pair (f̂α1α2...αp , X̄
α1α2...αp−1

f̂
) that also satisfies (II.9), where

X̄
α1α2...αp−1

f̂
= X

α1α2...αp−1

f̂
+ Y α1α2...αp−1

Hence we associate with f̂ ∈ SHF p an equivalence class of (⊗s)p−1Rk-valued vector fields, which we denote

by [[X̂f̂ ]] = [[Xα1α2...αp−1

f̂
r̂α1α2...αp−1 ]]. We will see below that even though we obtain equivalence classes of

Hamiltonian vector fields rather than vector fields, the geometry still carries natural algebraic structures.
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Definition II.3 For each p ≥ 1 let SHV p denote the vector space of all equivalence classes of (⊗s)p−1Rk-

valued vector fields [[X̂f̂ ]] = [[Xα1α2...αp−1

f̂
r̂α1α2...αp−1 ]] on P that satisfy the equations (II.9) for some f̂ =

f̂α1α2...αp r̂α1α2...αp
∈ SHF p. We then set

SHV = ⊕p≥1SHV p (II.16)

[[X̂f̂ ]] will be referred to as the generalized rank p Hamiltonian vector field defined by f̂ .

Example: The Hamiltonian vector field X̂f̂ for the rank 1 element in (II.13) is unique, and has the form

X̂f̂ = Aα ∂

∂zα
− (

∂Aβ

∂zγ
πα

β +
∂Bα

∂zγ
)

∂

∂πα
γ

(II.17)

The equivalence class of Rn-valued Hamiltonian vector fields corresponding to the rank 2 element in (II.13)

on LE has representatives of the form

X̂α
f̂

= (Aµνπα
µ + Bνα)

∂

∂zν
− 1

2

(
∂Aµβ

∂zγ
πα

µπν
β +

∂Bµ(α

∂zγ
πν)

µ +
∂Cαν

∂zγ

)
∂

∂πν
γ

+ Y αν
γ

∂

∂πν
γ

(II.18)

where Y αβ
γ are functions subject to the constraint

Y (αβ)
γ = 0

but are otherwise completely arbitrary. The fact that Y α = Y αµ
ν

∂
∂πµ

ν
is purely vertical on λ : LE → E

follows from (II.15).

Remark: For the n-symplectic rank 2 symmetric observable given above in (II.14), one can check easily

that the local coordinate form of a representative Xα
f̂

of the equivalence class of Hamiltonian vector fields

[[X̂f̂ ]]
α

that satisfies (II.9) has the form

Xα = (Aabπα
a + Bbα)

∂

∂zb
− 1

2

(
∂Aab

∂zd
πα

a πσ
b +

∂Ba(α

∂zd
πσ)

a +
∂Cασ

∂zd

)
∂

∂πσ
d

+ Y α (II.19)

II.2.1 Poisson Brackets

Definition II.4 For p, q ≥ 1 define a map { , } : SHF p × SHF q → SHF p+q−1 as follows. For f̂ =

fα1α2...αp r̂α1α2...αp
∈ SHF p and ĝ = gβ1β2...βq r̂β1β2...βq

∈ SHF q

{f̂ , ĝ}α1α2...αp+q−1 := p!X(α1α2...αp−1

f̂

(
ĝαpαp+1...αp+q−1)

)
(II.20)

where X̂
α1α2...αp−1

f̂
is any set of representatives of the equivalence class [[X̂f̂ ]].

We need to make certain that {f̂ , ĝ} is well-defined. Suppose we have two representatives X
α1α2...αp−1

f̂

and X̄
α1α2...αp−1

f̂
= X

α1α2...αp−1

f̂
+ Y α1α2...αp−1 of [[X̂f̂ ]]. Then it follows easily from (II.15) that

X̄
(α1α2...αp−1

f̂

(
ĝαpαp+1...αp+q−1)

)
= X̂

(α1α2...αp−1

f̂

(
ĝαpαp+1...αp+q−1)

)
Hence the bracket is independent of choice of representatives. That {f̂ , ĝ} actually is in SHF p+q−1 will

follow from corollary (II.7) below.
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Definition II.5 Let [[X̂f̂ ]] = [[Xα1α2...αp−1

f̂
r̂α1α2...αp−1 ]] and [[X̂ĝ]] = [[Xα1α2...αp−1

ĝ r̂α1α2...αp−1 ]] denote the

equivalence classes of vector-valued vector fields determined by f̂ ∈ SHF p and ĝ ∈ SHF q, respectively.

Define a bracket [[ , ]] : SHV p × SHV q → SHV p+q−1 by

[[[[X̂f̂ ]], [[X̂ĝ]]]] = [[[X̂(α1α2...αp−1

f̂
, X̂

αpαp+1...αp+q−2)
ĝ ]r̂α1α2...αp+q−2 ]] (II.21)

where the ”inside” bracket on the right-hand side is the ordinary Lie bracket of vector fields calculated using

arbitrary representatives. (Notice the symmetrization over all the upper indices in this equation.)

We again need to show that this bracket is well-defined. This is shown in the following lemma, in which

we will need the formula

LX(J ωα) = 0 (II.22)

which follows easily from (II.9) and the formula LXω = X dω + d(X ω). In (II.22) J denotes the

multiindex α1α2 . . . αp−1, and XJ denotes a representative of a rank p Hamiltonian vector field satisfying

equations (II.9). The next lemma shows that the bracket defined in (II.21) is (i) independent of choice of

representatives, and (ii) closes on the set of equivalence classes of vector-valued Hamiltonian vector fields.

Lemma II.6 Let [[X̂f̂ ]] and [[X̂ĝ]] denote the equivalence classes of vector-valued vector fields determined by

f̂ ∈ SHF p and ĝ ∈ SHF q, respectively. Then

[[[[X̂f̂ ]], [[X̂ĝ]]]] =
(p + q − 1)!

p! q!
[[X̂{̂f̂ ,ĝ}]] (II.23)

Proof We introduce the multiindex notation I = α1α2 . . . αp−1 and J = β1β2 . . . βq−1, so that we may use

the shorthand notation X
α1α2...αp−1

f̂
= XI

f̂
and X

β1β2...βq−1
ĝ = XJ

ĝ . Then using the identity LX(Y ω) =

X (LY ω) + [X, Y ] ω for any vector fields X, Y and any 2-form ω, we find:

[X̂(I

f̂
, X̂J

ĝ ] ωα) = L
X̂

(I

f̂

(
X̂J

ĝ ωα)
)
− X̂

(I

f̂

(
LX̂J

ĝ
ωα)
)

= L
X̂

(I

f̂

(
X̂J

ĝ ωα)
)

(By formula (II.22))

= X̂
(I

f̂
d(X̂J

ĝ ωα)) + d(X̂(I

f̂
X̂J

ĝ ωα))

= d(X̂(I

f̂
X̂J

ĝ ωα)) (since d
(
X̂

(J
ĝ ωα)

)
= d2ĝJα = 0)

= − 1
q!

d
(
X̂

(I

f̂
dĝJα)

)
(By (II.9)))

= − 1
p! q!

d({f̂ , ĝ}IJα) (By (II.9)))

Hence we have shown that for arbitrary representatives of [[X̂f̂ ]] and [[X̂ĝ]]

d({f̂ , ĝ}IJα) = −(p! q!)[X̂(I

f̂
, X̂J

ĝ ] ωα) (II.24)

Comparing this result with (II.9) we see that

p! q!
(p + q − 1)!

[X̂(I

f̂
, X̂

J)
ĝ ]r̂IJ ∈ [[X̂{̂f̂ ,ĝ}]] (II.25)
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holds for arbitrary representatives. The lemma follows.

Corollary II.7

{f̂ , ĝ} ∈ SHF p+q−1

Proof The corollary follows from (II.24).

Theorem II.8 (SHV, [[ , ]]) is a Lie Algebra.

Proof The bracket defined in (II.21) is clearly anti-symmetric. To check the Jacobi identity we note that we

only need check it for arbitrary representatives, and we may use the very definition (II.21) for the calculation.

Since the bracket on the right-hand-side in (II.21) is the ordinary Lie bracket for vector fields, we see that

the bracket defined in (II.21) also must obey the identiy of Jacobi.

We can now show that SHF is a Poisson algebra under the bracket defined in (II.20).

Theorem II.9 (SHF, { , }) is a Poisson algebra over the commutative algebra (SHF,⊗s).

Proof The bracket defined in (II.20) is evidently antisymmetric. To check the Jacobi identity one proceeds

exactly as in reference [3], which used a generalization of a proof given in reference [20]. The proof of the

Jacobi identity is given in the appendix.

Now the symmetrized tensor product ⊗s makes SHF into a commutative algebra. If we now consider

again elements f̂ ∈ SHF p, ĝ ∈ SHF q and ĥ ∈ SHF r, then by using definition (II.20) one may show that

{f̂ , ĝ ⊗s ĥ} = {f̂ , ĝ} ⊗s ĥ + ĝ ⊗s {f̂ , ĥ} . (II.26)

Thus the bracket defined in (II.20) acts as a derivation on the commutative algebra.

Example: In the canonical case P = LE the brackets just defined have a well-known interpretation. As

mentioned above the homogeneous elements in SHF p make up the space ST p(LE), the symmetric rank

p GL(n)-tensorial functions that correspond to symmetric rank p contravariant tensor fields on E. Then

ST = ⊕p≥1ST p ⊂ SHF , and the bracket { , } : ST p ×ST q → ST p+q−1 has been shown [6] to be the frame

bundle version of the Schouten-Nijenhuis bracket [16, 17] of the corresponding symmetric tensor fields on E.

Remark: There is also a Schouten-Nijenhuis bracket for anti-symmetric contravariant tensor fields on E,

and as one might expect this bracket also extends to LE. This leads to a graded n-symplectic Poisson

algebra of tensor-valued functions on LE [5].
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III The Canonical n-symplectic structure on LπE

In this section we present a few additional details about canonical n-symplectic geometry on frame bundles

that will be needed later. An adapted frame at e ∈ E is a frame where the last k basis vectors are vertical.

Note that coordinate frames that come from adapted coordinates are adapted frames. The adapted frame

bundle of π, denoted LπE, consists of all adapted frames for E.

LπE = {(e, {ei, eA}) : e ∈ E, {ei, eA} is a basis for TeE, and duπ(eA) = 0}

We will use the same notation λ : LπE → E to denote the restriction of the projection from LE to LπE.

LπE is a reduced subbundle of LE [15], the frame bundle of E. As such it is a principal fiber bundle

over E. Its structure group is Gv, the nonsingular block lower triangular matrices.

Gv =
{(

A 0
C B

)
: A ∈ GL(m), B ∈ GL(k), C ∈ Rkm

}
Gv acts on LπE on the right by

(e, {ei, eA}) ·
(

A 0
C B

)
= {(e, {eiA

i
j + eACA

j , eABA
B})

III.1 Coordinates on LπE

If (zα) = (xi, yA) are adapted coordinates on an open set U ⊆ E, then one may induce several different

coordinates on λ−1(U). Coframe or n-symplectic momentum coordinates (zα, πi
j , π

A
j , πA

B) on λ−1(U) are

defined as follows. Let u = (e, {ei, eA}) denote a general point in LπE. Then

zα(u) = zα(e) , πi
j(u) = ei(

∂

∂xj
) , πA

B(u) = eA(
∂

∂yB
) , πA

j (u) = eA(
∂

∂xj
) (III.27)

Here (ei, eA) is the coframe dual to (ei, eA), and as is customary we have retained the same symbols zα

for the induced horizontal coordinates. Note that the remaining coordinate functions πi
A(u) = ei( ∂

∂yA ) are

identically zero on LπE.

Frame or n-symplectic velocity coordinates (zα, vi
j , v

A
j , vA

B) on λ−1(U) are defined by:

zα(u) = zα(e) , vi
j(u) = ej(xi) , vA

B(u) = eB(yA) , vA
j (u) = ej(yA) (III.28)

The v coordinates, viewed together as a block triangular matrix, form the inverse of the π coordinates above.

The blocks have the following relations:

vi
jπ

j
k = δi

k vA
j πj

k + vA
BπB

k = 0 vA
BπB

C = δA
C

Finally we define Lagrangian coordinates, which are constructed from the previous two coordinate systems.

zα(u) = zα(e) , ui
j = πi

j , uA
B = πA

B , uA
j = vA

i πi
j = −vA

BπB
j (III.29)

The name Lagrangian coordinates refers to the fact, shown in reference [9], that the uA
j coordinates are

pull-ups, under the projection ρ defined in the next setion, of the standard jet coordinates on J1π.
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Later in the paper we will need the following formulas for the fundamental vertical vector fields E∗α
β on

LπE in Lagrangian coordinates.

E∗i
j = −ui

k

∂

∂uj
k

E∗A
B = −uA

C

∂

∂uB
C

E∗i
A = ui

kvB
A

∂

∂uB
k

(III.30)

IV The Modified n-symplectic Structure Defined by a Lagrangian L

To bring the Lagrangian into the n-symplectic picture, McLean and Norris [9] showed that LπE is a principal

H = GL(m)×GL(k) bundle over the bundle J1π of 1-jets of sections of π. Letting ρ : LπE → J1π denote

the projection, McLean and Norris then defined the CHP 1-forms θα
L on LπE as follows. If L is a Lagrangian

on J1π, the the lifted Lagrangian is L = ρ∗(L). Define θα
L by:

θi
L := τLθi + E∗i

A (L)θA (IV.31)

θA
L := θA (IV.32)

where τ = τ(m) is a positive constant depending only on the dimension m of the base manifold M , and E∗i
A

denotes the fundamental vertical vector field on LπE (see III.30 above) corresponding to the element Ei
A in

the standard basis (Eα
β ) of gl(n). The quantities E∗i

A (L), referred to as the ”covariant canonical momenta”

in [9], are globally defined on LπE. In local canonical coordinates (zα, πµ
ν ), these quantities have the local

expressions

E∗i
A (L) = πi

jp
j
BvB

A , pj
B =

∂L

∂uB
j

(IV.33)

and clearly are the frame components of the ”canonical field momenta” pj
B = ∂L

∂uB
j

. For different values of τ

one can obtain the de Donder-Weyl theory [21, 22] and the Caratheodory theory [23, 22] as special cases of

the formalism presented in reference [9]. The significance of these CHP 1-forms as regards other geometrical

theories was also considered by MacLean and Norris. In [9] it was shown that one may construct the CHP

m-form on J1π from the CHP 1-forms on LπE. In this regard see also references [5, 8, 15].

It is clear from the definitions (IV.31) and (IV.32) that the CHP 1-forms have the property that

X θα
L = 0 ∀ α = 1, 2, . . . , n ⇐⇒ dλ(X) = 0

Because of this property we can think of the CHP 1-forms as ”modified soldering 1-forms”, although the θα
L

may not have the same transformation property under right translation as do the θα because of the presence

of the Lagrangian L. However, by restricting attention to the H bundle ρ : LπE → J1π, we can show that

the θα
L are tensorial with respect to H transformations.

Lemma IV.1 For all h ∈ H the CHP 1-forms θα
L satisfy the tensorial transformation law

R∗h(θα
L) =

(
h−1

)α
β

θβ
L (IV.34)
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Proof

The CHP 1-forms given in (IV.31) and (IV.32) can be expressed, using the Lagrangian coordinates defined

in (III.29) above, in the form

θi = ui
j(−H

j
kdxk + pj

BdyB) (IV.35)

θA = uA
B(−uA

k dxk + dyB) (IV.36)

where we have introduced the definitions

Hi
j := pi

AuA
j − τLδi

j , pi
A :=

∂L

∂uA
i

(IV.37)

Using the additional definitions(
hα

β

)
=
(
−Hk

j pk
A

−uE
j δE

A

)
,

(
(∆u)α

β

)
=
(

uk
j 0
0 uE

A

)
(IV.38)

equations (IV.35) and (IV.36) can be written in the following compact form:

θα
L = ((∆u)α

β)hβ
γdzγ (IV.39)

The matrix ((∆u)α
β) in (IV.39) transforms under the group H of the bundle ρ : LπE → J1π while the second

factor (hα
β) is H-invariant. In particular, R∗h((∆u)α

µ) =
(
h−1

)α
β

(∆u)β
µ. The lemma follows.

The lemma shows that the CHP 1-forms do behave like modified soldering 1-forms with respect to the

bundle ρ : LπE → J1π. The geometrical significance of the lemma is that the CHP-forms define a set of

type 1-1 tensor fields on the jet bundle J1π. To see this we recall that the canonical soldering 1-forms θα

define the type 1-1 identity tensor field on E. The construction is as follows. Let u = (e, eβ) ∈ LE be an

arbitrary point in the bundle of frames of E. The coframe to (eβ) may be written as (eβ = πβ
α(u)dzα). Then

θ̂ = (θα) defines the identity type 1-1 tensor field on E as follows:

θ̂(u) = (πα
β dzβ)(u)⊗ rα −→ πα

β (u)dzβ ⊗ eβ = eβ ⊗ eβ = Ie (IV.40)

The tensorial transformation property of θ̂ on LE or any of its subbundles guarantees that the 1-1 tensor

field defined in (IV.40) is well-defined. We can use a similar construction to define a 1-1 tensor field on J1π

based on the CHP 1-forms.

Let u = (e, eβ) ∈ LπE be an arbitrary point in the bundle of adapted linear frames of E, and let

v = ρ(u) ∈ J1π be the projection to J1π. Then we define a 1-1 tensor field T on J1π as follows:

θ̂L(u) −→ T (v) = θi
L(u)⊗ ei + τL(u)θA

L ⊗ eA = ((∆u)i
β)(u)hβ

γ (u)dzγ ⊗ ei + τL(u)((∆u)A
β )(u)hβ

γ (u)dzγ ⊗ eA

(IV.41)

Notice the inclusion of the H-invariant factor τL(u) in the definition.

It is easy to show from the definitions that ((∆u)i
β)(u)ei = δi

β( ∂
∂xi + uA

i (v) ∂
∂yA ) and ((∆u)A

β )(u)eA =

δA
β

∂
∂yA . Using these results together with the definition (IV.37) in the last equation we can rewrite it as

T (v) = (−Hi
j)dxk ⊗ ∂

∂xi
− (uB

k pj
BuA

j )dxk ⊗ ∂

∂yA
+ (pj

A)dyA ⊗ ∂

∂xj
+ (pj

BuA
j + τLδA

B)dyB ⊗ ∂

∂yA
(IV.42)
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T is well-defined since the right hand side of the definition of T (v) is H-invariant. Hence the CHP 1-forms

define a type 1-1 tensor field on J1π, whose independent components with respect to any canonical chart on

LπE are, after omitting minus signs:

(a) (Hi
j)dxk ⊗ ∂

∂xi
the energy-momentum tensor of the field (IV.43)

(b) (pj
A)dyA ⊗ ∂

∂xj
the canonical field momentum (IV.44)

(c) (uB
k pj

BuA
j )dxk ⊗ ∂

∂yA
the canonical field momentum summed with field velocities(IV.45)

(d) (pj
BuA

j + τLδA
B)dyB ⊗ ∂

∂yA
a new energy-momentum-type field

These tensor fields will be of importance in the application presented in section VI.

IV.1 The Legendre Transformation

One can define the CHP 1-forms using a frame bundle version of the Legendre transformation. Given a

Lagrangian L : LπE → R we obtain a mapping φL : LπE → LE given by

φL(u) = φL(e, ei, eA) =
(

e,
1

τL(u)
ei, eA −

1
τL(u)

E∗a
A (L)(u)ea

)
(IV.46)

The condition that this mapping end up in LE is that the Lagrangian be non-zero, and for the rest

of this paper we will assume this condition. We will refer to this mapping as the n-symplectic Legendre

transformation. Our goal is to prove Theorem (IV.6), namely that θ̂L = φ∗L(θ̂) where θ̂ is the canonical

soldering 1-form on the image of φL. This will follow easily once we exhibit the manifold structure of QL.

Lemma IV.2 If the lifted Lagrangian is nonzero, then the Legendre transformation (IV.46) is one-one.

Proof If φL(u) = φL(ū) then the two adapted frames must project to the same point in E. Equating

vectors in the frame we find 1
τL(ū) ēi = 1

τL(u)ei and ēA − 1
τL(ū)E

∗a
A (L)(ū)ēa = eA − 1

τL(u)E
∗a
A (L)(u)ea. Using

the first of these relations in the second and rearranging we obtain

ēA − eA = (E∗a
A (L)(ū)− E∗a

A (L)(u))
1

τL(u)
ei

Since both ēA and eA are vertical on E this implies that (E∗a
A (L)(ū)− E∗a

A (L)(u)) = 0. Hence ēA = eA and
1

τL(ū) ēi = 1
τL(u)ei. This implies that ū = u · h for h ∈ H ⊂ GV . But since the Lagrangian L is lifted, it is H

invariant and so L(ū) = L(u), which implies that ū = u.

To clarify the meaning of the Legendre transformation (IV.46) we introduce a new manifold P̃ as follows.

Let J denote the subgroup of GL(n) consisting of matrices of the form(
I ξ
0 I

)
ξ ∈ Rm×k

12



Define P̃ by

P̃ = LπE · J = {(ei, eA + ξj
Aej) | (ei, eA) ∈ LπE , ξ ∈ Rm×k} (IV.47)

Lemma IV.3 P̃ is a open dense submanifold of the bundle of frames LE of E.

Proof Private communication from Mike McLean.

Lemma IV.4 There is a canonical diffeomorphism from P̃ to the product manifold LπE ×Rm×k.

Proof If (e, ei, eA) is a point in LπE, then we let ẽi = π∗(ei). From the structure of LπE it is clear that

(ẽi) is a linear frame for the tangent space to M at π(e). Let (ẽi) denote the coframe dual to (ẽi). Now

suppose ū = (ēi, ēA) = (ei, eA + ξj
Aej) is an arbitrary point in P̃ . Then we have π∗(ēi) = ẽi. Using the fact

that each eA is vertical we have π∗(ēA) = ξi
Aẽi. Hence

ξi
A = ẽi (π∗(ēA)) (IV.48)

Define a mapping from P̃ to LπE ×Rm×k by

ū = (ēi, ēA) −→
(
(ei, eA), ξi

A

)
=
(
(ēi, ēA − ẽj (π∗(ēA)) ēj), ẽi (π∗(ēA))

)
(IV.49)

The mapping (IV.49) is easily shown to be 1-1, and it is clearly smooth. The inverse mapping is the

multiplication mapping µ : LπE ×Rm×k → P̃ defined by

µ((ei, eA), ξj
B) = (ei, eA + ξj

Aej) (IV.50)

This inverse is evidently smooth.

Remark: The coordinate expression for this mapping is

ū = (ēi, ēA) −→
(
(ei, eA), ξi

A

)
=
(
(ēi, ēB − π̄j

A(ū)V̄ A
B (ū)ēj),−π̄j

A(ū)V̄ A
B (ū)

)
(IV.51)

where V̄ A
B (ū) = vA

B(u) are the components of the matrix inverse of the matrix
(
π̄A

B(ū)
)

=
(
πA

B(u)
)
, which must

necessarily be non-singular because of the structure of LπE. In the following we let ρ̄ : LπE×Rm×k → LπE

be the natural projection.

Suppose we are given a Lagrangian L on LπE. Then it is easy to see that the Legendre transformation

(IV.46) can be expressed as the composition φL = µ ◦ φ2 ◦ φ1, where µ is the multiplication map defined in

(IV.50) above, φ1 is the bundle automorphism

φ1 : LπE −→ LπE , φ1(ei, eA) = (
1

τL(u)
ei, eA) (IV.52)

and the mapping φ2 is the global section of ρ̄ given by

φ2(u) = φ2(ei, eB) =

(
(ei, eB),−

E∗j
A (L)(u)
τL(u)

)
(IV.53)
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The mapping φ1 is 1-1 since the Lagrangian L is invariant under the subgroup H, and ū = φ1(u) = u · h for

h =
(

τL(u)I 0
0 I

)
.

QL is then the image of LπE in P̃ under the C∞ Legendre transformation. In particular, QL is the smooth

image under the multiplication map of the global section φ2(LπE) of ρ̄ : LπE×Rm×k → LπE, and hence is a

smooth manifold. The inverse of the Legendre transformation is then the composition φ−1
L = φ−1

1 ◦φ−1
2 ◦µ−1,

where φ−1
2 is the projection ρ̄ restricted to µ−1(QL, ) and φ−1

1 (ū) = φ−1
1 (ēi, ēA) = (L(ū)ēi, ēA). The inverse

is thus also C∞, and we have:

Lemma IV.5 If the Lagrangian L is non-zero, then the Legendre transformation φL : LπE → QL is a

diffeomorphism.

Theorem IV.6 Let L be the pull-up of a non-zero Lagrangian L on J1π, and let φL denote the Legendre

transformation defined above in (IV.46). Then

θ̂L = φ∗L(θ̂) (IV.54)

Proof A straightforward calculation.

Remark: This theorem has an obvious analogue in symplectic mechanics, where the symplectic form on

the velocity phase space TE is, for a regular Lagrangian, the pull back under the Legendre transformation of

the canonical 1-form on T ∗M . There is also a similar theorem in multisymplectic geometry where the CHP

m-form on J1π is known [14] to be the pull back of the canonical multisymplectic m-form on J1∗π.

Now QL, being a submanifold of LE, supports the restriction θ̂|QL
of the Rn-valued soldering 1-form θ̂.

It is easy to verify that the closed Rn-valued 2-form dθ̂|QL
is also non-degenerate, and hence (QL, d(θ̂|QL

))

is an n-symplectic manifold. Using the fact that QL and LπE are diffeomorphic under the Legendre trans-

formation, we obtain the following corollary to Theorem IV.6.

Corollary IV.7 (LπE, dθ̂L) is an n-symplectic manifold.

Remark: It is also not difficult to show by direct calculuation that dθ̂L is non-degenerate.

We would now like to be able to find the n-symplectic observables defined by the n-symplectic structure

dθ̂L on LπE. However, since the new n-symplectic structure is not in canonical form in standard canonical

coordinates (zα, πµ
ν ), it is rather difficult to find the observables. This fact can be clarified as follows.

The local forms given above in (II.13) of the canonical n-symplectic algebras on LE were given in [3],

and were found by solving the equations

L
X

(I

f̂

dθα) = 0 (IV.55)

14



for the locally n-symplectic Hamiltonian vector fields. Lawson [15] used the same technique to characterize

the reduced algebra on LπE by solving the equations

L
X

(I

f̂

d(θ|LπE)α) = 0 (IV.56)

In both cases the equations were tractable because the n-symplectic forms could be written in canonical

coordinates. On the other hand the equations L
X

(I

f̂

dθ
α)
L = 0 are very complicated and are not easily solved.

To get around this problem we will use Corollary (IV.7). If we identify the n-symplectic algebra on the

n-symplectic manifold (QL, d(θ̂|QL
)), then we can use the Legendre transformation to transform back to

LπE. In particular, if f̂ and X̂f̂ satisfy the equation

df̂ = −X̂f̂ d(θ̂) (IV.57)

on QL, then φ∗L(f̂) and φ−1
L∗(X̂f̂ ) satisfy the equation

d(φ∗L(f̂)) = −φ−1
L∗(X̂f̂ ) d(φ∗L(θ̂)) (IV.58)

on LπE.

V n-symplectic Reduction

In order to characterize the n-symplectic observables on (QL, d(θ̂|QL
)) we will find a reduction of the n-

symplectic geometry of (P̃ , dθ̂) to (QL, d(θ̂|QL
)). Let i : QL → P̃ be the inclusion mapping, and let

f̂ : P̃ → Rn be an Rn-valued observable for the canonical n-symplectic geometry on (P̃ , dθ̂) such that its

Hamiltonian vector field X̂f̂ is tangent to QL at points of QL. Then on QL we have

d(i∗f̂) = −X̂f̂ d(i∗θ̂) (V.59)

This follows from the fact that i∗

(
i−1
∗ (X̂f̂ )

)
= X̂f̂ at points of QL when X̂f̂ is tangent to QL. Let SHF |QL

be the restriction to QL of the subset of SHF on P̃ such that the corresponding Hamiltonian vector fields

are tangent to QL at points of QL. The set SHF |QL
will be the reduced symmetric n-symplectic algebra

defined by the Lagrangian L. To find the reduced algebra we will derive the equations that X̂f̂ must satisfy

in order to be tangent to QL.

Define new coordinates on QL using the Legendre transformation to pull back the Lagrangian coordinates

(zα, ui
j , u

A
k , uA

B) define in III.29 above. We let

ũα = zα ◦ φ−1
L , ũi

j = ui
j ◦ φ−1

L , ũA
B = uA

B ◦ φ−1
L , ũA

j = uA
j ◦ φ−1

L (V.60)

Then the local vector fields
∂

∂ũα
,

∂

∂ũi
j

,
∂

∂ũA
j

,
∂

∂ũA
B

(V.61)
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form a local basis of the tangent spaces of QL. Any vector field that is tangent to QL can be expressed

locally in terms of this local basis. We first consider a rank 1 Hamiltonian vector field on P̃ given by (see

II.17)

X̂f̂ = fα ∂

∂z̄α
−
(∂fβ

∂z̄γ
π̄α

β

) ∂

∂π̄α
γ

(V.62)

corresponding to the observable f̂α = fβ(e)π̄α
β . We suppose that this vector field can be expanded in the

basis V.61 and write

X̂f̂ = Xα ∂

∂ũα
+ Xi

j

∂

∂ũi
j

+ XA
B

∂

∂ũA
B

+ XA
j

∂

∂ũA
j

(V.63)

Equating these two forms for X̂f̂ and using the fact (see IV.39) that π̄α
β ◦ φL = (∆u)α

σhσ
β we find Xα = fα

and

−∂fσ

∂z̄β
π̄α

σ = Xσ
∂̃hκ

β

∂zσ
(∆ũ)α

κ + Xi
jδ

α
i h̃j

β + XA
Bδα

Ah̃B
β + XA

k (∆ũ)α
κ

∂̃hκ
β

∂uA
k

(V.64)

where the ”over tildes” indicate that the term is to be evaluated in the new coordinates (V.60). These

equations can be solved for the coefficients Xi
j , XA

B , and XA
k in terms of the components of ∂fσ

∂z̄β , plus the

following constraint equation:

−∂fσ

∂z̄B
h̃b

σ = fσ ∂̃pb
B

∂zσ
− df b

dz̄i
p̃i

B −
1

τL

(
fσ ∂̃L

∂zσ
+

dfσ

z̄k
p̃i

Ah̃A
σ

)
p̃b

B +
dfσ

dz̄k
h̃A

σ

∂̃pb
B

∂uA
k

(V.65)

We next consider a rank 1 Hamiltonian vector field on P given by (see II.17)

X̂f̂ =
∂ξα

∂z̄γ

∂

∂π̄α
γ

(V.66)

corresponding to the observable f̂α = ξα(e). Carrying out the same calculuation that we did for f̂α =

fβ(e)π̄α
β above we find the constraint equation

−τL
∂ξa

∂z̄D
= p̃e

D

(
− dξa

dz̄e
+ ũa

b

dξE

dz̄k
ṽA

E(−p̃k
Aδb

e + p̃b
Aδk

e )
)

+ τL
dξE

dz̄k
ṽA

E ũa
b

∂̃pb
D

∂uA
k

(V.67)

An n-symplectic observable f̂ = (fβ π̄α
β + ξα)rα on P̃ will be in SHF |QL

if and only if it satisfies the two

constraint equations V.65 and V.67.

VI Application: k-tuple of Massless Scalar Fields on Flat Space-

time

As an application of the general theory we will study the rank-1 n-symplectic subalgebra of observables that

is defined by the simple model of a k-tuple of massless scalar fields on Minkowski spacetime. Analysis of the

more complicated higher rank portions of the algebra will be left for future work. For the k-tuple of massless

scalar fields the bundle π : E → M over Minkowski spacetime M is a trivial vector bundle with standard fiber

Rk. Such a system has a lifted Lagrangian of the form L = 1
2gabδABuA

a uB
b where gab are the contravariant

components of the Minkowski metric tensor in arbitrary coordinates on the spacetime manifold and δAB are
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the components of the Euclidean metic tensor for the internal space Rk . Since global inertial coordinates

exist on Minkowshi spacetime, we will for the calculations restrict attention to canonical coordinates on LE

that are induced by such inertial coordinates on spacetime. Then the components of the metric tensor field

will take the constant Minkowski form (ηab) = diag(−1, 1, 1, 1), and the Lagrangian will be

L =
1
2
ηabδABuA

a uB
b (VI.68)

Using this Lagrangian for the k-tuple of scalar fields on Minkowski spacetime we find the standard result

pi
A = ηijδABuB

j (VI.69)

We observe that for this Lagrangian equations (V.65) and (V.67) are satisfied by fα = Cα = constant and

ξα = Kα = constant.

Theorem VI.1 The rank-1 n-symplectic Hamiltonian vector field (II.17) for the n-symplectic manifold

(P̃ , dθ̂) will satisfy the reduction equations (V.65) and (V.67) for the Lagrangian of the k-tuple of massless

scalar fields on Minkowski spacetime if

fα = Cα = constant , ξα = Kα = constant (VI.70)

Remark: We recall from equation (II.11) that the rank-1 algebra HF 1 = T 1(LE) ⊕ C∞(E,Rm+k) is the

direct sum of the rank-1 tensorial functions T 1(LE) on LE that correspond uniquely to vector fields on

E, with the Rm+k-valued functions C∞(LE,Rm+k) that are constant on fibers of LE, i.e. C∞(E,Rm+k).

The above theorem tells us that the subalgebra corresponding to the tensorial functions is a copy of the

translation symmetry group Rm+k of the base manifold E = Rm+k. Hence we may interpret the tensorial

part of the rank-1 subalgebra corresponding to fα = Cα = constant as the space of translational Killing

vectors for the metrics η on M and δ on the fibers of E. The other part of the algebra, characterized by

ξα = Kα = constant, can be identified also with Rm+k. The part of the rank-1 algebra SHF 1|QL
on QL

determined by the theorem is therefore

G = Rm+k ⊕Rm+k (VI.71)

There is an alternative interpretation of the tensorial part of the rank-1 subalgebra in terms of ”n-

symplectic momentum mapping”. In [5] it was pointed out that the translation group Rm+k lifts from E =

Rm+k to LE to define an n-symplectic momentum mapping, and that for each (ζα) ∈ Rn the corresponding

”momentum” is ζαπβ
αr̂β . Notice that ζαπβ

αr̂β is precisely ζ̂, i.e. it is the tensorial function corresponding to

the vector field ζα ∂
∂zα on E. Hence the tensorial part of the rank-1 subalgebra can also be thought of as the

”set of all momenta” that arise from the n-symplectic momentum map defined by the lift of Rm+k to LE.

VI.1 The Algebra of Observables on LπE

To obtain the n-symplectic algebra on LπE we must pull-back the observables f̂ and use the inverse Legendre

transformation to map the corresponding Hamiltonian vector fields X̂f̂ to LπE. Letting Cα and Kα denote
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constants, we have found rank 1 observables on LπE of the form

F̂ := φ∗L(Cαπ̄β
α + Kα) rα =

(
Cαφ∗L(π̄β

α) + Kα
)

rα

From (IV.39) and (IV.54) one can infer that φ∗L(π̄α
β ) = (∆u)α

σhσ
β . Hence the rank 1 observables on LπE have

the form

F̂ =
(
(Cβ(∆u)α

σhσ
β) + Kα

)
rα (VI.72)

Mapping the Hamitonian vector field X̂f̂ = Cα ∂
∂z̄α corresponding to (Cαπ̄β

α + Kα) rα to LπE using (φ−1
L )∗

one finds in this special case the simple result

(φ−1
L )∗(Cα ∂

∂z̄α
) = Cα ∂

∂zα
(VI.73)

Hence for fixed values of Cα and Kα we have the n-symplectic rank 1 equation on (LπE, dθ̂L)

d(Cβ(∆u)α
σhσ

β) + Kα) = −(Cβ ∂

∂zβ
) dθα

L (VI.74)

Because Kα are constants, this equation can be rewritten as

Cβd((∆u)α
σhσ

β)) = −(Cβ ∂

∂zβ
) dθα

L (VI.75)

We recall that in section IV we observed that the CHP 1-forms θα
L = (∆u)α

σhσ
βdzβ define the physical

type 1-1 tensor fields on J1π given in equations IV.43 - IV.46. The part F̂ =
(
(Cβ(∆u)α

σhσ
β)
)

rα of the

rank 1 observable VI.72 will thus correspond to linear combinations of these type 1-1 tensor fields on J1π;

that is linear combinations of field velocities, momentum and energy-momentum tensors.

Remark: Notice that on QL the Hamiltonian vector field for the observable f̂ = (Cαπβ
α +Kβ)r̂β is Cα ∂

∂z̄α ,

independent of the constants Kα. In fact the kernel of the mapping HF 1 −→ HV 1 is the set of observables

Kαr̂α where Kα are all constants. Thus the mapping from the Lie algebra of rank-1 observables to the Lie

algebra of rank-1 Hamiltonian vector fields is not an isomorphism. In [5] it was shown that this kernel for

rank 1 observables can be removed by lifting the theory to the bundle of affine frames of E, thereby obtaining

the desired isomorphism from observables to the vector fields that will serve as the Hamiltonian operators

in a geometric quantization theory.

VII Conclusions

The formulation of an n-symplectic algebra of observables for a covariant Lagrangian field theory set forth

in this paper lays the foundations for a Kostant-Souriau geometric quantization theory of fields. The paper

has three main parts. Part one is section II of this paper, in which we developed the n-symplectic Poisson

and graded Poisson algebras of observables defined on an abritrary n-symplectic manifold. These algebras

paralleled the algebras presented in [3] for the special case of the bundle of linear frames of an n-dimensional
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manifold. In Part two of the paper, consisting of sections III - IV, we set up the n-symplectic covariant

field theory on LπE for a Lagrangian field theory. The theory includes the definition of an n-symplectic

Legendre transformation, and the subsequent definition of the CHP 1-forms θα
L as the pull-back, under the

Legendre transformation, of the canonical soldering 1-forms on LE. We then showed that (LπE, dθ̂L) is

an n-symplectic manifold, and set up the equations of n-symplectic reduction on (QL, d(θ̂|QL
) in order to

identify the observables on LπE. The third part of the paper, section VI, presents a simple application of

the theory to the model of a k-tuple of massless scalar fields on Minkowski spacetime. We found that the

rank 1 observables contain the translational Killing vectors of the Minkowski spacetime and the Euclidean

fibers. When pulled back to LπE these observables correspond to linear combinations of the field velocities,

momentum and energy-momentum tensors on J1π.

We have pointed out that in the general theory on LπE the mapping from the Lie algebra of observables

to the Lie algebra of Hamiltonian vector fields is not an isomorphism, the kernel of the mapping being the set

of all constant Rn-valued functions on LπE. This is the analogue of what occurs on a symplectic manifold.

In a geometric quantization theory one needs an isomorphism in order to geometrize the Dirac quantization

rules. In the present case one can establish such an isomorphism by lifting the theory to an appropriate

affine frame bundle using the results in reference [5] where it was shown how to establish this isomorphism

for the rank-1 n-symplectic algebras. This result was extended by Cartin to all n-symplectic observables in

reference [24]. We have therefore arrived at the frontiers of a geometric quantization theory of fields based

on n-symplectic geometry.

Acknowledgements: The author would like to thank Modesto Salgado and Mike McLean for many

helpful discussions during the preparation of this manuscript.

VIII Appendix: Proof of the Jacobi identity for theorem II.9

Let X̂I
f̂
, X̂J

ĝ and X̂K
ĥ

denote arbitrary sets of representatives of the equivalence classes of Hamiltonian

vector fields determined by f̂ ∈ SHF p, ĝ ∈ SHF q and ĥ ∈ SHF r respectively, where I, J,K denote the

multiindices I = α2α3 . . . αp, J = αp+1αp+2 . . . αp+q−1 and K = αp+qαp+q+1 . . . αp+q+r−2. Then by using

dω̂ = 0 and the standard identity for evaluating dω(X, Y, Z) for ω a 2-form we obtain

0 = 3dω(α(X̂I
f̂
, X̂J

ĝ , X̂
K)

ĥ
)

= X̂
(I

f̂
ωα(X̂J

ĝ , X̂
K)

ĥ
) + X̂

(J
ĝ ωα(X̂K

ĥ
, X̂

I)

f̂
) + X̂

(K

ĥ
ωα(X̂I

f̂
, X̂

J)
ĝ )

− ω(α([X̂I
f̂
, X̂J

ĝ ], X̂K)

ĥ
)− ω(α([X̂K

ĥ
, X̂I

f̂
], X̂J)

ĝ )− ω(α([X̂J
ĝ , X̂K

ĥ
], X̂I)

f̂
)

(VIII.76)
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Equations (II.9) and (II.20) can be combined to yield the identity

ω(α
(
X̂I

f̂
, X̂

J)
ĝ

)
=

1
2p! q!

{f̂ , ĝ}αIJ (VIII.77)

Using this formula and formula (II.23) in (VIII.76) we obtain

0 = X̂
(I

f̂
(

1
2q!r!

{ĝ, ĥ}JKα)) + X̂
(J

ĥ
(

1
2p!q!

{f̂ , ĝ}IJα)) + X̂
(K
ĝ (

1
2p!r!

{ĥ, f̂}KIα))

− (p + q − 1)!
p!q!

ω(α(XIJ
{f̂ ,ĝ}, X̂

K)

ĥ
)− (p + r − 1)!

p!r!
ω(α(XKI

{ĥ,f̂}, X̂
J)
ĝ )− (q + r − 1)!

q!r!
ω(α(XJK

{ĝ,ĥ}, X̂
I)

f̂
)

Next we use the definition (II.20) in the first three terms and formula (VIII.77) in the last three terms to

obtain

0 =
1

2p!q!r!
{f̂ , {ĝ, ĥ}}L +

1
2p!q!r!

{ĥ, {f̂ , ĝ}}L +
1

2p!q!r!
{ĝ, {ĥ, f̂}}L

− (p + q − 1)!
p!q!

(
1

2(p + q − 1)!r!
{{f̂ , ĝ}, ĥ}L)− (p + r − 1)!

p!r!
(

1
2(p + r − 1)!q!

{{ĥ, f̂}, ĝ}L)

− (q + r − 1)!
q!r!

(
1

2(q + r − 1)!p!
{{ĝ, ĥ}, f̂}L)

where the multi-index L denotes (αIJK). Cancelling the common factor 1
p!q!r! we obtain

0 =
1
2
{f̂ , {ĝ, ĥ}}L +

1
2
{ĥ, {f̂ , ĝ}}L +

1
2
{ĝ, {ĥ, f̂}}L − 1

2
{{f̂ , ĝ}, ĥ}L − 1

2
{{ĥ, f̂}, ĝ}L − 1

2
{{ĝ, ĥ}, f̂}L

= {f̂ , {ĝ, ĥ}}L + {ĥ, {f̂ , ĝ}}L + {ĝ, {ĥ, f̂}}L

Hence the n-symplectic bracket defined in (II.20) obeys the identity of Jacobi.
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[16] J. A. Schouten, Über Differentialkomitanten zweier kontravarianter Grossen, Proc. Kon. Ned. Akad.

Wet. Amsterdam 43 (1940) 449–452.

[17] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields, Indag.

Math. 17 (1955) 390–403.

[18] A. Awane, k-symplectic Structures, J. Math. Phys. 33 (1992) 4046–4052; Structures k-symplectiques

(Doctoral dissertation), Mulhouse, 1992.

[19] M. de León, I. Mndez, M. Salgado: p-almost cotangent structures, Bolletino Unione Matematica Italiana

(7) 7-a (1993), 97-107; Regular p-almost cotangent structures, J. Korean Math. Soc. 25, (1988), No.2,

273-287; M. de León, E. Merino, J. Oubiña, P. Rodrigues, M. Salgado, Hamiltonian systems on k-

cosymplectic manifolds, J. Math. Physics, 39, (1997), 876-893; M. de León, E. Merino, M. Salgado,

k-Cosymplectic manifolds and Lagrangian field theory, preprint; M. de León, J. Oubiña, M. Salgado,

Integrable almost s-tangent structures, Rendiconti di Matematica, Serie VII Volume 14, (1994), 609–

623.

[20] N. Woodhouse, Geometric Quantization, 2nd ed. (Oxford Press, Oxford, 1992).
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