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ABSTRACT

We identify the fiber-bundle-with-connection structure that underlies the Lanczos
H-tensor formulation of Riemannian geometrical structure. Motivated by the Lanczos
Lagrangian that includes the tensorial constraint that the linear connection be the Levi-
Civita connection of the metric tensor, we consider linear connections to be type (1,2)
affine tensor fields. We sketch the structure of the appropriate fiber bundle that is needed
to describe the differential geometry of such affine tensors, namely the affine frame bundle
A1

2M with structure group A1
2(4) = GL(4)©s T 1

2 R4 over spacetime M. Generalized affine
connections on this bundle are in 1-1 correspondence with pairs (Γ,K) on M, where the
gl(4)-component Γ denotes a linear connection and the T 1

2 R4-component K is a type (1,3)
tensor field on M. Once an origin Γ̂0 is chosen in the affine space of linear connections
one may define the gauge components of any other linear connection Γ̂ relative to Γ̂0,
and these gauge components correspond to type (1,2) tensor fields on M. Taking the
origin to be the Levi-Civita connection Γ̂g of the metric tensor g, and taking the pair
({ µ

νκ}, Rµνκ
λ) as the generalized Riemannian affine connection, we show that the Lanczos

H-tensor arises from a gauge fixing condition on this geometrical structure. The resulting
translation gauge, the Lanczos gauge, is invariant under the transformations found earlier
by Lanczos, and these transformations are identified as elements of a subgroup of the
translation group {I}©s T 1

2 R4. The other Lanczos variables Qµν and q are constructed in
terms of the translational component of the generalized affine connection in the Lanczos
gauge. To complete the geometric reformulation we reconstruct the Lanczos Lagrangian
completely in terms of affine invariant quantities. The essential field equations derived
from our A1

2(4)-invariant Lagrangian are the Bianchi and Bach-Lanczos identities for four-
dimensional Riemannian geometry. We also show that the field equations based on the
generalized translational curvature that are the analogs of the affine field equations of the
P (4) = O(1, 3)©s R4∗ unified theory of gravitation and electromagnetism are equivalent to
the field equations of Yang’s source-free gravitational gauge theory of the non-integrable
phase factor.
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1. Introduction

The classical view of the structure of the four-dimensional Riemannian geometry that
underlies relativistic theories is that of a hierarchy of geometrical objects constructed
from the fundamental Riemannian metric tensor field g = gµνdxµ ⊗ dxν . The metric
tensor itself serves to define lengths and angles in the tangent spaces of the spacetime
manifold, but when one considers the correlation of lengths and angles at different points
of spacetime then the geometrical object of interest is the Levi-Civita linear connection, or
Christoffel symbols { µ

νκ}, constructed from g and its first partial derivatives. In order to
determine whether or not the parallel transport defined by this Riemannian connection is
path dependent one turns to the Riemannian curvature tensor Rµνκ

λ constructed from { µ
νκ}

and its first partial derivatives. This structural hierarchy can be represented conveniently
by the diagram

gµν
∂κ−→ { µ

νκ}
∂κ−→ Rµνκ

λ . (1.1)

The modern version of this classical structure has as its arena the bundle of linear
frames LM of the spacetime manifold M . The metric tensor of spacetime defines a unique
tensorial R4⊗R4-valued function on LM that reduces the structure group GL(4,R) to the
group O(1, 3) and yields the subbundle OM of orthonormal linear frames. The Levi-Civita
connection itself may be viewed as the unique torsion free gl(4)-valued connection 1-form
ωg on LM that itself reduces to OM , and the Riemannian curvature tensor Rµνκ

λ lifts to
the curvature 2-form Ωg defined by ωg. Indeed, this well-known fundamental fiber bundle
characterization of classical Riemannian geometry is well-understood.

To further dissect the structure of Riemannian geometries one must introduce ad-
ditional ideas that in turn lead to the decomposition of one or more of the three basic
geometric objects in (1.1) above. In 1918 Weyl [1] considered conformal transformations
g(p) → ḡ(p) = eσ(p)g(p) of the metric tensor and found the (Weyl) conformal curvature
tensor

Cµνκ
λ = Rµνκ

λ − 2g[µ[κLν]α]g
αλ , Lµν = −Rµν + (

1
6
)gµνR (1.2)

which remains invariant under conformal transformations.
The conformal curvature tensor Cµνκ

λ can also be introduced algebraically. In 1956
Géhéniau and Debever [2] used the Hodge dual operation (see the Appendix) to obtain
the following algebraic decomposition of the curvature tensor

Rµνκλ = Cµνκλ + Eµνκλ − (
1
12

)gµνκλR , (1.3)

where gµνκλ = 2gµ[κgλ]ν and Eµνκλ = −gµνα[λ(Rα
κ] − ( 1

4 )Rδα
κ]). The tensors C and E

satisfy
Cµνκλ = −C ∗ ∗

µνκλ

Eµνκλ = E ∗ ∗
µνκλ

(1.4)

and are thus anti-self-double-dual and self-double-dual, respectively.
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There exists another classical characterization of the geometrical structure associated
with the Weyl conformal curvature tensor, namely the third-order potential structure in-
troduced by Lanczos [3] in 1962. Lanczos considered the Lagrangian

L =
√
−g

(
RµναβR

∗
µν

∗
αβ + Hµνα∇βR

∗
µν

∗
αβ + P να

µ (Γµ
να − { µ

να}) + ρµν(Rµν − F (Γ)µν)
)

,

(1.5)
where F (Γ)µν = ∂αΓα

µν − ( 1
2 )(∂µΓα

αν + ∂νΓα
αµ) + Γα

αβΓβ
µν − Γβ

µαΓα
νβ . Lanczos had already

shown [4] in 1938 that variation of the first term L1 =
√
−g

(
RµναβR

∗
µν

∗
αβ

)
, the Pontrjagin

density , with respect to the metric tensor and connection vanishes identically. This is now
known to be related to the fact that RµναβR

∗
µν

∗
αβ is equivalent to the four-form defining

the first Pontrjagin class3 p1(TM) of the tangent bundle, and p1(TM) is independent of
the connection used in its construction. Lanczos included the remaining terms in (1.5) as
constraints so that he could vary the metric tensor gµν , linear connection Γµ

νκ, and the

(double-dual) curvature tensor R
∗
µν

∗
αβ independently. The term involving the Lagrange

multiplier Hµνα is the constraint to the Riemannian Bianchi Identity ∇βR
∗
µν

∗
αβ = 0, the

third term constrains the linear connection to be the Levi-Civita connection, while the
last constraint term gives the definition of Rµν in terms of the connection Γ. Lanczos
showed that the Euler-Lagrange equations derived from (1.5) imply that the curvature
tensor Rµνλκ and the conformal curvature tensor Cµνλκ may be expressed as4

Rµνλκ = −4[gµλ(Qνκ − qgνκ)]− 4[∇µHλκν ] , (1.6)
Cµνλκ = −4C [∇µHλκν ] , (1.7)

where the tensor Qµν and scalar ( 1
4 )q are the trace-free and trace parts of ρµν , respectively:

ρµν = Qµν + qgµν , Qµ
µ = 0 . (1.8)

The square brackets used in (1.6) and (1.7) denote symmetrization processes that are
discussed in the Appendix. The essential point is that the square bracket used in (1.6),
when applied to a rank 4 covariant tensor Aµνκλ, yeilds a new rank 4 covariant tensor
[Aµνκλ] that has the same symmetries as does the Riemann curvature tensor. The square
bracket with a presubscript of C used in (1.7) adds the additional condition that the
resulting tensor C [Aµνκλ] be trace-free in all indices with respect to the Riemannian metric
tensor g. Hence C [Aµνκλ] has the same symmetries as does the Weyl conformal curvature
tensor Cµνκλ.

Lanczos also showed [3] that the left-hand-sides of both (1.6) and (1.7) remain invari-
ant under the combined “gauge type” transformations

Hµνλ = H ′
µνλ + (Vµgνλ − Vνgµλ) (1.9a)

Qµν = Q′
µν + (∇µVν +∇νVµ − (

1
2
)gµν∇λV λ) (1.9b)

q = q′ − (
1
2
)∇µV µ (1.9c)
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where Vµ is an arbitrary vector. The form of Cµνλκ given in (1.7) where it is constructed
from first derivatives of Hλκν shows that Hλκν may in some sense be considered as a
“potential” for the Weyl conformal curvature tensor5 . We point out that in Ref. 3
Lanczos did not prove the existence of a third order potential Hλκν for the Weyl conformal
tensor of an arbitrary spacetime manifold; rather, he derived field equations for such
potentials. Since the Euler-Lagrange equations derived from a variational principle need
not be consistent, an existence theorem was needed. Bampi and Caviglia [9] proved that one
may always solve the Lanczos field equations for a potential Hλκν for the Weyl conformal
curvature tensor in a four-dimensional analytic spacetime.

Until now the precise sense in which the Lanczos tensor Hλκν is a potential for the
Weyl conformal curvature tensor has not been identified. Moreover the apparent “gauge
transformations” (1.9) have not been explained in a gauge theoretic way, nor has the
“gauge group” been explicitly identified, and up to now no fiber bundle characterization
of this H-tensor structure for Riemannian geometries has been developed. In this paper
we show that the theory of generalized affine connections on a certain affine frame bundle
A1

2M = LM×GL(4) A
1
2(4) is the fiber bundle structure that underlies the Lanczos H-tensor

formalism. For a four-dimensional spacetime manifold M the structure group of A1
2M is

the semi-direct product affine group A1
2(4) = GL(4)©s T 1

2 R4. In this setting we will show
that the Lanczos theory is a special case of the theory of the geometry of linearly
connected geometries. That is to say, we will show that when one considers linear
connections as affine tensors and introduces a particular generalized affine connection so
as to be able to differentiate these affine tensors covariantly, then the Lanczos H-tensor
arises in a natural way from a gauge fixing condition imposed on the generalized affine
connection.

The structure of the paper is as follows. In Section 2 we present a brief survey of the
relevant facts concerning generalized affine connnections for affine tensors of type (1,2).
This will allow us to treat the derivatives of linear connections, thought of as affine tensors,
in a covariant way. Such a generalized affine connection may be specified by a pair (Γ, Γ̂0K)
on a manifold M, where Γ denotes a linear connnection and Γ̂0K is a type (1,3) tensor field
on M representing the translational component of the connection. When we specialize
to Riemannian geometry we consider the generalized Riemannian affine connection
specified by the pair (Γg, Rg), where Γg is the Levi-Civita connection of the metric g and
Rg is the Riemann curvature tensor of g.

In Sections 3 and 4 we examine the Lanczos H-tensor formulation of Riemannian
geometrical structure using the formalism developed in Section 2. In Section 3 we show that
the Lanczos variables Qµν and q that appear in (1.6)-(1.9) may be constructed in a natural
way from the Riemannian affine connection ({ µ

νκ}, Rµνκ
λ). The gauge transformations

(1.9b) and (1.9c) then follow from the formula for the transformation of a generalized affine
connection. Then in Section 4 we show that the Lanczos expression (1.7) for the conformal
tensor built from derivatives of the tensor Hµνκ follows from a gauge-fixing condition on
the generalized affine connection ({ µ

νκ}, Rµνκ
λ). The resulting Lanczos gauge is unique

up to transformations of the form (1.9). In this sense the subgroup of the translations
defined by (1.9) defines the Lanczos symmetry subgroup of T 1

2 R4.
In Section 5 we reconstruct the Lanczos Lagrangian (1.5) from affine invariant quan-

tities. The Lanczos variational variables (gµν ,Γµ
νκ, R

∗
µν

∗
αβ) are replaced by the variables

(gµν , (Γµ
νκ,Kµνα

β)). Thus the Riemannian metric tensor is retained, and Γµ
νκ and R

∗
µν

∗
αβ

4



are replaced by a generalized affine connection. The affine field equations derived from our
Lagrangian yield the Bianchi and Bach-Lanczos identities [4,11] for 4-dimensional Rieman-
nian geometry as well as the Lanczos potential structure equations (1.6) and (1.7). Finally
in Section 6 we present a summary of our results together with a comparison of the basic
structure of the theory with that of the recently introduced P (4) = O(1, 3)©s R4∗ affine
unified theory of gravitation and electromagentism [12]. We argue that the natural A1

2(4)
analogue of the P(4) theory yeilds Yang’s [13] source-free gravitational gauge theory of the
non-integrable phase factor. In the Appendix we discuss certain technical details that are
needed throughout the paper.

2. The Affine Geometry of Linear Connections.

If one restricts attention to tensor geometry on a manifold M then the basic structure
needed to introduce a covariant differentiation of tensor fields is a linear connection 1-form
ω on the bundle of linear frames LM of M, or equivalently connection coefficients

Γ = (Γµ
νκ) (2.1)

of ω on open sets of the base manifold M. Given Γ and any tensor field T on M one can
differentiate T in a tensorial way using the covariant derivative

∇Γ(T ) (2.2)

of T with respect to Γ. Moreover, the fundamental tensor formed from derivatives of Γ is
the curvature 2-form

Ω = dω + ω ∧ ω (2.3)

on LM, and the corresponding curvature tensor

Rµνλ
κ = 2∂[µΓκ

ν]λ + 2Γκ
[µ|ρ|Γ

ρ
ν]λ (2.4)

on the base manifold M.
This structure is sufficient for any theory that employs tensor geometry relative to

a fixed (perhaps arbitrary) linear connection. If one considers a theory where the con-
nection itself is a variable then one needs to deal with connections in a covariant way.
Unfortunately, the components Γµ

νκ of the connection do not, however, themselves form
the components of a tensor field. Connection 1-forms ω on LM are pseudo-tensorial rather
than tensorial, and this is of course the reason for the inhomogeneous transformation law
for the connection coefficients Γµ

νκ. On the other hand it is well known that the set of
all linear connections C on a manifold M forms an affine space. The basic feature of this
affine structure is that the difference between two linear connections (Γ2)

µ
νλ and (Γ1)

µ
νλ is

a tensor Tνλ
µ:

(Γ2)
µ
νλ − (Γ1)

µ
νλ = Tνλ

µ . (2.5)

Put another way, any type (1,2) tensor field Tµ
νλ can be added to a linear connection (Γ1)

µ
νλ

to obtain another linear connection (Γ2)
µ
νλ:

(Γ2)
µ
νλ = (Γ1)

µ
νλ + Tνλ

µ . (2.6)
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But notice that the addition on the right hand side of (2.6) is the addition of two distinctly
different types of geometric objects. Moreover, one notices that the addition of two linear
connections does not produce a third linear connection. The underlying mathematical
structure is that of an affine space6 in which addition of points is not defined (sum of
two linear connections not a linear connection), but in which an operation of subtraction
that yields a “vector” is defined (difference of two linear connections produces a type (1,2)
tensor). Thus the set of all linear connections on a manifold M is an infinite dimensional
affine space modeled on the infinite dimensional vector space of type (1,2) tensor fields on
M. We now suppress indices and rewrite (2.6) as

Γ̂2 = Γ̂1 ⊕ T (2.7)

where the symbol ⊕ signifies that the meaning of this equation is contained in the equation
(2.6). As this equation indicates we will use the notational convention of putting a hat
over a connection when considering it as an “affine tensor”.

The geometrical arena for type (1,2) affine tensors is the affine frame bundle A1
2M of

type (1,2). Points in the bundle space of A1
2M are affine frames, namely triples (p, eµ, T )

where (eµ) is a linear frame for the tangent space TpM and where T is a type (1,2) tensor at
p ∈ M , the “origin” of the affine frame. The group of A1

2M is the affine group of type (1,2)
A1

2(4) = GL(4)©s T 1
2 R4. One can build up the theory of generalized affine connections for

A1
2M along the lines followed by Kobayashi and Nomizu [15]. Here, however, we present

only the relevant facts in local spacetime coordinates that will be needed to reformulate
the Lanczos theory in terms of affine tensors.

From the point of view of gauge theory one may consider the expression (2.7) as defin-
ing T as the gauge components of Γ2 with respect to the gauge (origin) Γ1. Moreover,
one knows that in a gauge theory one needs a gauge connection in order to bring covari-
ance to expressions involving derivatives of the gauge components of geometrical objects.
In the affine theory of linear connections as affine tensors one thus needs a generalized
affine connection to deal with objects with both ordinary tensorial properties plus the new
properties associated with the affine transformation law (2.7). We introduce a generalized
affine connection for such objects as follows.

Choose an origin Γ̂0 ∈ C and a linear frame field (eµ) on an open set in M. Such a pair
(eµ, Γ̂0) will be referred to as an affine frame field for affine tensors of type (1,2). We are
thus identifying Γ̂0 with the zero tensor field of type (1,2). Then define the components
(Γλ

µν , Γ̂0Kµνλ
κ) of a generalized affine connection with respect to this affine frame by

Dµ(eν) ≡ ∇µ(eν) = Γλ
µνeλ (2.8a)

Dµ((Γ̂0)κ
νλ) = Γ̂0Kµνλ

κ (2.8b)

This definition of a generalized affine connection is a Kozul-type definition. In (2.8a) ∇µ

denotes the linear covariant derivative with respect to the connection Γ.
We will refer to Γλ

µν and Γ̂0Kµνλ
κ as the linear and translational components, respec-

tively, of the generalized affine connection. The linear component Γλ
µν are the coefficients

of a linear connection while the translational component Γ̂0Kµνλ
κ is a type (1,3) ten-

sor field on M. The left superscript on Γ̂0Kµνλ
κ indicates the explicit dependence of the

translational component of the connection on the choice of origin of the affine frame.
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Affine frame fields are related by A1
2(4) gauge transformations. Let (gµ

ν , Tβγ
α) be a

point dependent A1
2(4)-valued function on M. Then the gauge transformation formula is

(eµ, Γ̂0) −→ (e′µ, Γ̂′
0) = (eµ, Γ̂0) · (gµ

ν , Tβγ
α) = (eµgµ

ν , Γ̂0 + T ) (2.9)

where T = Tβγ
αeα ⊗ eβ ⊗ eγ . Under such a gauge transformation the linear compo-

nent of the affine connection transforms in the standard way. On the otherhand for the
translational component one finds

Γ̂0⊕T Kµ = Γ̂0Kµ +∇µ(T ) . (2.10)
This is the gauge transformation formula for the translational components of a gen-
eralized affine connection under the change of origin Γ̂0 −→ Γ̂0 ⊕ T .

The curvature of the generalized affine connection (Γλ
µν , Γ̂0Kµνλ

κ) can be constructed
using standard techniques. We denote this curvature by the pair (R, Γ̂0Φ) where

R = (Rµνλ
κ) (2.11)

is the linear curvature tensor of the linear connection Γµ
νλ given in (2.4) above, and

(Γ̂0Φ)µναβ
κ = 2∇[µ(Γ̂0K)ν]αβ

κ + 2Sµν
σ(Γ̂0K)σαβ

κ (2.12)
are the components of the translational curvature with respect to the origin Γ0. The tensor
Sµν

σ in (2.12) is the torsion of the linear connection Γ.
We note for later applications that if Γ is any linear connection on M and R is its

curvature tensor, then R is a type (1,3) tensor field. Hence we may infer that the pair
(Γ, R) defines a generalized affine connection for type (1,2) affine tensors. In this setting
we note that the usual rules for exterior covariant differentiation of the affine tensor Γ̂1

with respect to the affine connection (Γ, R) yields the formula

Dµ(Γ̂1)ν
λκ = ∇µ(Tλκ

ν) + Rµλκ
ν . (2.13)

Here Tλκ
ν = (Γ1)ν

λκ − Γν
λκ is the base space form of the tensorial difference form defined

by the two connections Γ1 and Γ. Equation (2.13) is equivalent to the formula Dω(ω1) =
Dω(ω1 − ω) + Ω one would obtain on LM for the exterior covariant derivative of the
connection 1-form ω1 of Γ1 with respect to the linear connection 1-form ω of Γ. Note,
however, that the second term on the right in (2.13), which represents the curvature of ω,
is independent of Γ1 and Tνλ

µ, and this non-linear term shows that the proper setting
for covariant derivatives of connections is generalized affine geometry.

A Riemannian metric defines a Levi-Civita connection Γg and a Riemannian curvature
tensor Rg on M, and this pair (Γg, Rg) thus defines a generalized affine connection for type
(1,2) affine tensors, which we will refer to as a Riemannian affine connection. Since
the torsion of the Levi-Civita connection is trivial the translational curvature in this case
reduces to the simple form

(Γ̂0Φ)µναβ
κ = 2∇[µ(Γ̂0K)ν]αβ

κ (2.14)
Finally we note that in Section 5 we will need a particular double dual curvature

constructed from the translational component of the full affine curvature in an arbitrary
gauge Γ̂. We suppose that this curvature is defined on a spacetime manifold (M, g) and we

use the associated Hodge dual operator to define an associated rank three tensor (Γ̂Φ)
∗
µ
∗
νκ

by

(Γ̂Φ)
∗
µ
∗
νκ = (

1
3!2!

)ηµαβγηνκλρ(Γ̂Φ)αβγλρ . (2.15)
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3. The Lanczos Gauge Transformations as Affine Gauge Transformations

The Lanczos H-tensor formulation of Riemannian geometrical structure arises from a
variational principle which is based purely on linear connections and the associated linear
differential geometry. As discussed in Section 1, the results of this formalism relate the
Riemannian curvature tensor Rαβµ

ν and the Weyl conformal curvature tensor Cαβµ
ν in any

given Riemannian geometry to the Lagrange multipliers Hαβ
µ, Qαβ and q. Furthermore,

if certain “gauge” conditions are placed on Hαβ
µ, the above identifications are unique, up

to a very specific type of gauge transformation. In this and the next section we will show
that this entire Lanczos formalism may be reformulated in a natural way in terms of the
affine geometry of type (1,2) affine tensors.

In this section we concentrate on the Lanczos Lagrange multipliers Qαβ and q and
show that they may be constructed in a natural way from the translational component of
a generalized affine connection. The Lanczos variables Qαβ and q will thus be shown to be
affine tensors, and accordingly they will transform inhomogeneously under the translational
subgroup of A1

2(4). In particular the Lanczos gauge transformations given in relations
(1.9b) and (1.9c) will be shown to be a special case of general affine gauge transformations.

Throughout this section we assume a Riemannian affine connection (Γg, Rg) on a 4-
dimensional spacetime (M,g). In Section 2 we have seen that any type (1,2) tensor T

induces a translation in the affine space of connections of the form Γ̂ → Γ̂⊕T . In order to
set up an affine model of the Lanczos formalism we first restrict the translations in A1

2(4)

to the subgroup G defined by antisymmetric tensors Aµνα
def
= Tα[µν]. If we make the choice

Γg −→ Γ̂g for the origin in the affine space of linear connections, where Γg is the Levi-
Civita connection on M, then a transformation Γ̂g → Γ̂g ⊕A by elements of the subgroup
now takes the form

Γν
αµ = { ν

αµ}+ Aµ
ν
· α . (3.1)

Clearly each linear connection Γν
αµ obtained from a translation of the form given in (3.1)

is a metric connection.
Consider next the translational components Γ̂′

Kµναβ of the Riemannian affine con-
nection expressed in any general gauge Γ̂′ = Γ̂g ⊕ A′. A further translation of the form
Γ̂′ → Γ̂′ ⊕A implies that the translational connection transforms as

Γ̂′⊕AKµναβ = Γ̂′
Kµναβ +∇µAαβν . (3.2)

Using the bracket operation defined in the Appendix we induce the symmetries of the
Riemannian curvature tensor on each term in (3.2):

[Γ̂
′⊕AKµναβ ] = [Γ̂

′
Kµναβ ] + [∇µAαβν ] . (3.3a)

It is convenient to introduce an associated tensor Ãαβµ constructed from Aαβµ as in
(A5) that has the additional symmetry property Ã[αβµ] = 0. Moreover, it follows from
(A6) in conjunction with (3.3a) that [Γ̂

′⊕AKµναβ ] = [Γ̂
′⊕ÃKµναβ ]. Hence, when dealing

with the bracket operation one may work with Ãαβµ rather than Aαβµ. Therefore, instead
of (3.3a) we will consider the relation

[Γ̂
′⊕ÃKµναβ ] = [Γ̂

′
Kµναβ ] + [∇µÃαβν ] (3.3b)
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This equation is the starting point for many of our developments.
In terms of the translational components of the affine connection in any translational

gauge Γ̂′, we define the generalized Lanczos affine tensors Γ̂′
Qνα and Γ̂′

q by

Γ̂′
Qνα

def
=

1
2

(
[Γ̂

′
Kνα]− 1

4
gνα[Γ̂

′
K]

)
(3.4a)

Γ̂′
q

def
= − (

1
24

)[Γ̂
′
K] . (3.4b)

In the above expressions we have used certain contractions which are discussed in the
Appendix.

Since Γ̂′
Qνα and Γ̂′

q are constructed directly from the translational component of the
affine connection they do not transform as linear tensors. In particular, it follows from (3.3)
and (3.4) that under the general translation of origin Γ̂′ → Γ̂′⊕ Ã by an arbitrary antisym-
metric tensor Ãαβν = Ã[αβ]ν the generalized Lanczos affine tensors transform according to
the rules

Γ̂′⊕ÃQνα = Γ̂′
Qνα −

1
8
(Ãνα + Ãαν) +

1
16

gναÃβ
β (3.5a)

Γ̂′⊕Ãq = Γ̂′
q +

1
48

Ãβ
β , (3.5b)

respectively. Here we have used the definition Ãνα = ∇µÃν
µ
. α −∇αÃνµ

µ
. .

We now want to exhibit a special property of the generalized Lanczos affine tensors
Γ̂Qµν and Γ̂q. We first consider the specialization of the transformations (3.5) under the
subgroup of translations by antisymmetric tensors Ãαβν of the form

Ãαβν = 4(Vαgβν − Vβgαν) (3.6)

where Vα is an arbitrary vector. This special form is motivated by the transformation
(1.9a) on Hµνλ considered by Lanczos. Substituting (3.6) into (3.5a) and (3.5b) we find
the specialized transformations

Γ̂Qνα = Γ̂′
Qνα + (∇αVν +∇νVα −

1
2
gαν∇µV µ) (3.7a)

Γ̂q = Γ̂′
q − 1

2
∇µV µ , (3.7b)

respectively. On the left-hand sides of the above equations we have relabeled the trans-
formed gauge as Γ̂

def
= Γ̂′⊕ Ã, where Ã is defined in (3.6). We observe that transformations

(3.7a) and (3.7b) have precisely the same form as the Lanczos transformations given in
(1.9b) and (1.9c). They arise in the present formalism as the transformation laws of the
affine tensors Γ̂Qµν and Γ̂q, constructed from the translational component of a generalized
affine connection, under the restricted translations defined in (3.6) above.
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4. The Lanczos H-tensor in Affine Geometry: The Lanczos Gauge

In the last section we showed that the naturally defined affine tensors Γ̂Qµν and Γ̂q
have precisely the same transformation properties as do the Lanczos Lagrange multipliers
Qµν and q. In this section we complete the affine reformulation of the Lanczos method.
In particular we show that the Lanczos H-tensor arises from a gauge fixing condition
imposed on a Riemannian affine connection. Moreover, we will show that the entire Lanczos
formalism contained in relations (1.6) and (1.7) can also be recovered from the same gauge
fixing condition.

For the sake of generality we will initially choose our generalized affine connection to
be ({ α

βµ}, Γ̂gKµναβ), where Γ̂gKµναβ is an arbitrary rank four tensor field. As discussed
in the previous section we restrict translations to translations by anti-symmetric tensors
Aαβµ = Tµ[αβ]. In particular, a translation Γ̂g → Γ̂g ⊕ A induces a transformation of the
translational component of the generalized affine connection (see (3.2)) which may be used
to obtain (3.3a) and, without loss of generality (3.3b), where we make the identification
Γ̂′ = Γ̂g.

The starting point for the rest of this section is thus the fundamental equation (3.3b)
with Γ̂′ = Γ̂g. As described in the Appendix the bracket operator can be split into a
“conformal” (or trace-free) part C [ ] and a “local” (or trace) part L[ ] defined in (A3)
and (A4), respectively. Using these ideas we may decompose (3.3b) as

C [Γ̂g⊕ÃKµναβ ] = C [Γ̂gKµναβ ] + C [∇µÃαβν ] , (4.1)

L[Γ̂g⊕ÃKµναβ ] = L[Γ̂gKµναβ ] + L[∇µÃαβν ] . (4.2)

Since the object Γ̂g⊕ÃKµναβ is part of a generalized affine connection, we may consider
gauge-fixing conditions on this part of the connection. In particular, we will investigate
the consequences of the specific gauge-fixing condition

C [Γ̂g⊕ÃKµναβ ] = 0 . (4.3)

This condition (4.3) in conjunction with (4.1) implies

C [Γ̂gKµναβ ] = −C [∇µÃαβν ] . (4.4)

Recently, Bampi and Caviglia [9] have investigated the integrability conditions associ-
ated with (4.4) thought of as a partial differential equation for Ãµνκ and have shown that
local solutions of (4.4) always exist. Furthermore they showed that a solution is unique up
to addition of a rank three tensor field of the form given in (3.6). The only assumption
required for the existence of local solutions of (4.4) is that (M,g) be a four dimensional
analytic Riemannian spacetime.

Throughtout the remainder of this section we shall choose the generalized affine con-
nection to be the Riemannian affine connection (Γg, Rg) as we did in Section 3. With this
assumption we note that since Γ̂gKµναβ = Rµναβ , we have C [Γ̂gKµναβ ] = Cµναβ , and thus
(4.4) reduces to

Cµναβ = −C [∇µÃαβν ] . (4.5)
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Relation (4.5) is clearly of the same form as that given in (A7) which arises in the standard
Lanczos formalism, and we are thus motivated to introduce the following definition.

Def. #4.1: Let Γ̂gKµναβ = Rµναβ and let the tensor field Ãαβν , defined by the anti-
symmetric tensor Aαβν = −Aβαν as in (A5), satisfy C [Γ̂g⊕ÃKµναβ ] = 0. Then we define
the generalized Lanczos tensor Hαβ

µ by

Hαβµ = (
1
4
)Ãαβµ . (4.6)

Note that it follows from the properties of Ãαβµ that H[αβµ] = 0. It does not follow,
however, that Hαβ

µ also satisfies the other standard Lanczos “gauge” conditions Hαβ
β = 0

and/or ∇µHαβ
µ = 0.

Clearly, if we use definition (4.6) the gauge translation of interest can be written as
Γ̂g → Γ̂g ⊕ Ã = Γ̂g ⊕ 4H, and condition (4.3) becomes C [Γ̂g⊕4HKµναβ ] = 0. Furthermore,
with this same identification (4.5) reduces precisely to the Lanczos form of Cµναβ in terms
of Hµνα given in (A.7). The above discussion shows that the generalized Lanczos tensor
arises, within the context of this new affine formalism, from a gauge fixing condition
placed on the translational component of the Riemannian affine connection (Γg, Rg) defined
by the spacetime metric tensor. We will refer to any translational gauge defined by (4.3)
as a Lanczos gauge. Such a gauge is unique up to gauge translations by tensors of the
form defined in (3.6), and the subgroup of the translation group defined in this way will
be called the Lanczos symmetry group.

Below we consider two theorems, the first of which is an adaptation of the main results
of Bampi and Caviglia [9] to affine geometry while the second theorem represents a new
affine version of the Lanczos H-tensor formulation of Riemannian geometrical structure.
The general setting for the theorems is as follows. We consider a given four-dimensional
analytic Riemannian spacetime manifold M with metric tensor field g, and as above we
denote by Γg the torsion-free linear connection 1-form defined by g. In the affine space
of linear connections we choose an origin by setting Γg → Γ̂g as we have done in Section
2. Furthermore, we select the Riemannian affine connection (Γg, Rg) determined by Γg.
Then in local coordinates on M we have the local components of the translational part of
the generalized affine connection given by Γ̂gKµνα

β = Rµνα
β .

Theorem 4.1: There always exist local solutions Ãαβµ of the equation

C [Γ̂g⊕ÃKµναβ ] = 0 , (4.7)

where Ãαβµ is anti-symmetric Ãαβµ = Ã[αβ]µ, and satisfies Ã[αβµ] = 0. Moreover, since
this equation is equivalent to

Cµναβ = −C [∇µÃαβν ] , (4.8)

a particular solution of (4.7) is provided by a generalized Lanczos tensor defined by a
solution Ãαβµ of (4.8).
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Theorem 4.2: Suppose that the tensor field Ãαβµ is anti-symmetric Ãαβµ = Ã[αβ]µ, and
suppose that it satisfies Ã[αβµ] = 0 and the gauge-fixing condition

C [Γ̂g⊕ÃKµναβ ] = 0 . (4.9)

Let Hαβν be a generalized Lanczos tensor defined by Ãαβν . Then

Cµναβ = −4(C [∇µHαβν ]) (4.10)

and
Rµναβ = −4[∇µHαβν ]− 4[gµα

(
Γ̂g⊕4HQνβ − (Γ̂g⊕4Hq)gνβ

)
] (4.11)

where Γ̂g⊕4HQνβ and Γ̂g⊕4Hq are defined in (3.4a) and (3.4b), respectively.

Proof: The gauge-fixing condition (4.9) is a restatement of the condition given in (4.3).
Relation (4.10) follows directly from (4.8) of Theorem 4.1 in conjunction with Definition
4.1.

Next we note that relation (4.11) follows from (4.9) by considering the local part of
the bracket which appears in (4.2). In particular, given a general Γ̂′

Kµναβ , expressed in
any gauge Γ̂′, we construct L[Γ̂

′
Kµναβ ] according to definition (A4). Moreover, we also use

definitions (3.4a) and (3.4b) in definition (A4) to rewrite the previous relation in the form

L[Γ̂
′
Kµναβ ] = −4[gµα

(
Γ̂′

Qνβ − (Γ̂
′
q)gνβ

)
] . (4.12)

Next write [Γ̂
′
Kµναβ ] = C [Γ̂

′
Kµναβ ] + L[Γ̂

′
Kµναβ ] and, in particular, if we let Γ̂′ = Γ̂g ⊕ Ã,

then (4.9) implies
[Γ̂g⊕ÃKµναβ ] = L[Γ̂g⊕ÃKµναβ ] . (4.13)

Finally, we use (4.12) (with Γ̂′ = Γ̂g ⊕ Ã) in (4.13), and then insert the result into
(3.3b). We can now use the fact that [Γ̂gKµναβ ] = Rµναβ together with Definition 4.1 to
rewrite (3.3b) in the form (4.11).

Relation (4.10) clearly has the same form as Lanczos’s formula (1.7) for the conformal
curvature tensor in terms of his H-tensor. Similarly, relation (4.11) is also of the same form
as the analogous relation (1.6) obtained by Lanczos. In the new affine formulation both
(4.10) and (4.11) arise directly from the transformation of the translational component of
the generalized affine connection, as in (3.2), in conjunction with the single gauge-fixing
condition (4.9).

5. An Affine Generalization of the Lanczos Variational Principle

In this section we consider a Palatini type of variational principle which represents an
affine generalization of the Lanczos variational principle7 based on the Langrangian (1.5).
We will show that the resulting field equations are the Bianchi and Bach-Lanczos identities
[4,11] for four-dimensional Riemannian spacetime geometry.
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In our affine variational principle we will vary the A1
2(4)-invariant Langrangian (5.1)

with respect to the metric gµν and a generalized affine connection (Γµ
λκ, Γ̂0Kµνλ

κ). We
recall that Lanczos added the constraint terms in (1.5) so that he could vary as independent
variables the metric gµν , the linear connection Γµ

νλ, and the double-dual curvature tensor
Rµ∗νλ∗κ. Since the variation of the generalized affine connection corresponds to a variation
of the pair (Γα

βµ, Γ̂Kαβµ
ν) on spacetime M , our variation variables would be the same as

the Lanczos variables if we would constrain Γ̂Kµνλκ to be Rµ∗νλ∗κ. However, we find it
more natural to constrain the translational component of the connection to be the Riemann
tensor Rµνλ

κ. To within this difference the Lanczos variables (Γµ
νκ, Rµ∗νλ∗κ) are unified in

the generalized affine connection (Γµ
νκ, Γ̂Kµνλ

κ). Our generalization of (1.5) is the A1
2(4)-

invariant Lagrangian density

L =
√
−g(L1 + L2 + L3 + L4 + L5) (5.1)

where the individual terms Li are:

L1 = (D̂Γ̂0) · ∗(D̂Γ̂0)∗

= (
1
4
)(ηαβµνηγδσρ)gλδgρκ

(
(Γ̂0K)αβγ

λ(Γ̂0K)µνσ
κ
)

, (5.2)

L2 = Bνλµ

(
(Γ̂Φ)

∗
µ
∗
νλ − (Γ̂Φ̃)

∗
µ
∗
νλ

)
, (5.3)

L3 = Σαβµ
ν

(
(Γ̂Kαβµ

ν − Γ̂K̃αβµ
ν)−

0

Rαβµ
ν

)
, (5.4)

L4 = Pµν
λ(

0

Γλ
µν − { λ

µν}) , (5.5)

L5 = Λαβµ
ν(Γ̂K̃αβµ

ν −
0

∇αTβµ
ν) . (5.6)

Before proceeding to the variation a few words are in order concerning the struc-
ture of this Lagrangian. We now denote an arbitrary generalized affine connection by

(
0

Γλ
µν , Γ̂Kµνλ

κ). Moreover we use the linear connection Γ0 = (
0

Γλ
µν) to define an origin Γ̂0

in the affine space of linear connections. Hence any other gauge Γ̂ in the affine space can
be expressed as Γ̂ = Γ̂0⊕T so that each gauge relative to Γ̂0 is determined by a rank three
tensor field Tµν

λ. The Christoffel symbols occuring in the constraint term L4 are defined

in terms of the metric variable gµν while the curvature tensor
0

Rµνλκ is the curvature tensor

of the linear connection
0

Γλ
µν .

Referring to the transformation law (2.10) we see that the constraint term L5 intro-
duces a pure gauge connection Γ̂K̃αβµ

ν which vanishes identically in the Γ̂0 gauge. This
pure gauge connection and its curvature are used in the terms L3 and L2, respectively, to
insure translational invariance of the Lagrangian. The differences (Γ̂Φ)

∗
µ
∗
νλ − (Γ̂Φ̃)

∗
µ
∗
νλ and

Γ̂Kαβµ
ν − Γ̂K̃αβµ

ν occuring in (5.3) and (5.4) are differences between affine tensors and
thus are translationally invariant tensors. The duals denoted by stars ∗ in (5.2) and (5.3)
are Hodge duals determined by the metric tensor (see the Appendix).
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Finally we consider the term L1. Substitution of the constraint given in (5.4) into L1 in
the Γ̂0 gauge shows that L1 is the affine invariant way of writing the term RµνλκRµ∗νλ∗κ

that plays such a central role in the Lanczos Lagrangian (1.5). In preparation for the
variation we use the transformation law (2.10) to rewrite L1 in the general gauge Γ̂ as

L1 = (
1
4
)(ηαβµνηγδσρ)gλδgρκ

(
(Γ̂K)αβγ

λ(Γ̂K)µνσ
κ − (Γ̂K)αβγ

λ
0

∇µTνσ
κ

− (Γ̂K)µνσ
κ

0

∇αTβγ
λ +

0

∇αTβγ
λ

0

∇µTνσ
κ

)
.

(5.2b)

The total Lagrangian L is to be varied with respect to the basic variables gµν ,
0

Γµ
αβ ,

Γ̂Kµνλ
κ and Γ̂K̃µνλ

κ. Moreover we recover the contraints by varying L with respect to the
Lagrange multipliers. We note that the multiplier Λµνλ

κ has no specific symmetries while
the remaining multipliers have the index symmetries Bνλµ = B[νλ]µ, Σµνλ

κ = [Σµνλ
κ],

Pµν
λ = P (µν)

λ. As the total variation of the Langrangian is rather complicated we consider
the results of the individual variations sequentially.

Variation of L with respect to Pµν
λ yields the constraint

0

Γλ
µν = { λ

µν}. Thus the linear

component of the generalized affine connection
0

Γλ
µν as well as the origin of the affine space

of connections is the Levi-Civita connection of the metric. Variation of L with respect
to Λµνα

β then implies the relation Γ̂K̃µνα
β = ∇µTνα

β , where ∇µ now denotes covariant
differentiation with respect to { µ

νλ}. This relation shows, as mentioned above, that Γ̂K̃µνα
β

is a flat affine connection that vanishes in the Γ̂g gauge.
The variation of L with respect to Σµνλ

κ, when combined with the above results,
yields

Γ̂gKµνλ
κ = Rµνλ

κ , (5.7)

where Rµνλ
κ is now the Riemannian curvature tensor of the metric tensor. The above

relations thus show that we have constrained the generalized affine connection to be the
Riemannian affine connection ({ µ

αβ}, Rµνλ
κ).

The final constraint follows from variation of L with respect to the Lagrange multiplier
Bµνλ. This variation yields, upon using the previous relation,

Γ̂gΦ
∗
µ
∗
νλ = ∇µRµ∗νλ∗κ = 0 , (5.8)

which we recognize as the double-dual form of the full Riemannian Bianchi identities. Here
it arises from the vanishing of the double-dual translational curvature.

The field equations which arise from variation with respect to the basic variables gµν ,
0

Γλ
µν , Γ̂K̃αβµ

ν and Γ̂Kµνλ
κ are initially complicated, but they can be reduced to simplified

form using (5.7)-(5.8). After omitting pure divergences that arise in the variation we obtain
the following set of field equations:

δL

δ(Γ̂Kµνλ
κ)

=⇒ 0 = Σµνλ
κ + (

1
3
)gακησρµν∇σB

∗
λα

ρ + 2gακR
∗
µν

∗
λα , (5.9)
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δL

δ(Γ̂K̃µνλ
κ)

=⇒ 0 = Λµνλ
κ − Σµνλ

κ − (
1
3
)gακησρµν∇σB

∗
λα

ρ , (5.10)

δL

δgλκ
=⇒ 0 =

(
2Rαβγ

(λ|R
∗
αβ

∗
γ|κ) − (

1
2
)gλκRαβγδR

∗
αβ

∗
γδ

)
+ (

1
2
)∇α(Pακλ + Pλακ − Pκλα) , (5.11)

δL

δ
0

Γµ
αβ

=⇒ 0 = Pαβ
µ + 2∇σΣσ(αβ)

µ

+ (
2
3
)(gλµB

∗
κλ

ρR
∗
ρ(α|

κ
|β) −B(

∗
β|λ

ρR
∗
ρ|α)

µλ) . (5.12)

Lanczos showed that the Lagrange multipliers Pµν
α and ρµν occurring in (1.5) could

be eliminated in terms of the variables Hµνα, Rµ∗νλ∗κ, and gµν . A similar result occurs in
this affine reformulation. In particular, combining equations (5.9) and (5.12) we find

Pµν
λ = 0 . (5.13)

This result, namely the vanishing of the Lagrange multiplier constraining the connection to
be the Levi-Civita connection of the metric, also occurs in the standard Palatini variational
principle in general relativity. We note that (5.13) follows identically from (5.9) and (5.12)
and does not depend on the choice of the tensor field Bµν

λ.
Substituting (5.13) into (5.11) yields

2Rαβγ
(λ|R

∗
αβ

∗
γ|κ) − (

1
2
)gλκRαβγδR

∗
αβ

∗
γδ = 0 . (5.14)

This relation is the Bach-Lanczos identity [4,11] for a four-dimensional Riemannian
geometry.

Equation (5.13) is the analog of the relation (2.14) in the 1962 Lanczos paper [3].
Indeed, in that work Lanczos obtained a rather complicated relation for Pµν

λ, and it is
unclear whether or not that term can be reduced to zero using the other field equations
found by Lanczos. Similarly equation (5.14) is the analog of the complicated relation
(2.15) in Ref. [3], and it is not clear when the Lanczos equation (2.15) reduces to equation
(5.14) above. On the other hand we note that Lanczos had derived (5.14) in 1938 [4] as
an identity for four dimensional Riemannian geometries.

Finally we want to rederive the Lanczos potential structure equations (1.6) and
(1.7). These will follow from the remaining two field equations (5.9) and (5.10) involv-
ing the Lagrange multipliers Σµνλ

κ, Λµνλ
κ and Bλα

ρ. Adding (5.13) and (5.14) yields

−( 1
2 )Λµνλ

κ = gακR
∗

µν
∗

λα which, in view of (5.7), shows that Λµνλ
κ is superfluous.

We noted above that (5.13) follows identically from (5.9) and (5.12) and is independent
of the choice of the tensor field Bµν

λ. In fact all of the above results, and in particular
the set of field equations (5.9)-(5.12), are consistent for any choice of Bµν

λ. Thus Bµν
λ is

completely arbitrary. This gauge freedom clearly reflects the arbitrariness in the choice of
origin in the affine space of linear connections.
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Thus let us consider Bµν
λ in (5.9) to be some fixed, but arbitrary, tensor field. Next

we solve (5.9) for Σµνλ
κ, take the double-dual of the result, and then form the bracket of

the resulting equation. This yields

−(
1
2
)[Σ∗

µν
∗
κλ

] = Rµνλκ + (
1
3
)[∇µBκλν ] . (5.15)

Forming the conformal part of this equation using C [ ] yields

−(
1
2
)C [Σ∗

µν
∗
κλ

] = Cµνκλ + (
1
3
)C [∇µBκλν ] . (5.16)

Using the Bampi-Caviglia integrability theorem [9] discussed in Section 4 we know that we
can find a local solution Mµνλ to the equation ( 1

8 )C [Σ∗
µν

∗
κλ

] = C [∇µMκλν ]. Using this result
back in (5.16) and rearranging terms we find the expression Cµνκλ = −4C [∇µHκλν ] for
the conformal curvature tensor, where Hκλν ≡ Mκλν + ( 1

12 )Bκλν . Thus we have recovered
the Lanczos potential structure equation (1.7).

Next we use (5.7) to rewrite Cµνκλ = −4C [∇µHκλν ] in the form C [Γ̂gKµνκλ] =
−4C [∇µHκλν ]. As described in Section 4 this last expression is equivalent to the expression

C [Γ̂g⊕4HKµνκλ] = 0. The final structure equation (1.6) now follows from Theorem 4.2.

6. Conclusions

A central idea in modern physics is to use gauge fields to model the fundamental
forces of nature, and the geometrical setting for gauge theories is that of connections on
principal fiber bundles. In this paper we have shown that the Lanczos H-tensor formulation
of Riemannian geometrical structure can be modeled in a natural way using a generalized
affine connection on a particular affine frame bundle A1

2M .
It is well-known that the set of all linear connections on a manifold M has a natural

affine structure, and in Section 2 we introduced the basic machinery needed to treat linear
connections as affine tensors of type (1,2). In particular we argued that the basic geo-
metrical object needed for such affine tensors is a generalized affine connection on A1

2M .
Each such affine connection may be specified by a pair (Γµ

νκ, Γ̂0Kµνκ
λ) where Γµ

νκ denotes
a linear connection and Γ̂0Kµνκ

λ is a type (1,3) tensor field representing the translational
component of the affine connection with respect to the origin Γ̂0 in the affine space of linear
connections. We noted that an affine connection may be specified by a linear connection
Γµ

νκ and its curvature tensor Rµνκ
λ, namely as the pair (Γµ

νκ, Rµνκ
λ). We were then led

to the formula (cf. equation (2.13))

Dµ(Γ̂1)ν
λκ = ∇µ(Tνλ

µ) + Rµλκ
ν (6.1)

for the affine covariant derivative of the linear connection (Γ1)ν
λκ when it is treated as an

affine tensor. This fundamental relation plays a key role in the later developments.
In order to make contact with the Lanczos formulation of Riemannian geometrical

structure we considered a four-dimensional spacetime (M, g), and we chose the origin of
the affine space of linear connections to be Γg −→ Γ̂g, where Γg denotes the Riemannian
connection coefficients constructed from the given metric tensor g. Furthermore, given Γg
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we defined a unique generalized affine connection, or Riemannian affine connection,
by choosing the pair ({ µ

νλ}, Rµνκ
λ) on M.

In Sections 3 and 4 we considered A1
2(4) induced translations of the form Γ̂′ −→ Γ̂′⊕A,

where A is a type (1,2) tensor which satisfies the symmetry property Aµν
α = −Aνµ

α.
We then showed that the entire Lanczos H-tensor formalism for Riemannian geometrical
structure arises from a gauge-fixing condition on the translational connection Γ̂′

Kµναβ ,
namely the condition

C [Γ̂g⊕ÃKµναβ ] = 0 . (6.2)

Without loss of generality we have replaced the tensor Aαβν with the tensor Ãαβν which
satisfies the additional symmetry condition Ã[αβν] = 0. We showed in Section 4 that
this single condition reproduces the Lanczos relations (1.6) and (1.7) when we make the
identifications

Γ̂′
Qµν = (

1
2
)
(

[Γ̂
′
Kµν ]− (

1
4
)gµν [Γ̂

′
K]

)
(6.3a)

Γ̂′
q = −(

1
24

)[Γ̂
′
K] (6.3b)

Hµνκ = (
1
4
)Ãµνκ . (6.3c)

Note that the geometrical objects defined in (6.3a) and (6.3b) are constructed directly
from the translational component Γ̂′

Kµνκ
λ of the generalized affine connection and are thus

affine tensors, transforming as in (3.5a) and (3.5b) under translations. In particular those
transformation formulas involve the derivatives of the translation tensor Aµνκ. On the
otherhand the transformation law (1.9a) for the Lanczos Hµνκ involves the transformation
vector itself rather than its derivatives. In fact Hµνκ defined in (6.3c) is a tensor that fixes
the gauge in which (6.2) is satisfied. We call this gauge the Lanczos gauge. It is unique
up to translations of the form Ãµ

ν
κ = 4(Vµδν

κ − V νgµκ) where V µ is an arbitrary vector.
Hence the Lanczos Hµνλ is not uniquely defined and is thus also an affine tensor. When
the translations in A1

2(4) are restricted to the Lanczos symmetry subgroup, namely to
transformations induced by (1,2) tensors of the form given above, then the transformations
of the affine tensor Γ̂′

Qµν and the affine scalar Γ̂′
q given in (3.5a) and (3.5b) reduce to the

special forms (1.9b) and (1.9c) considered by Lanczos.
We point out that in the present developments we have used only a small part of the

available geometrical structure associated with generalized affine connections for type (1,2)
affine tensors. Specifically, the entire Lanczos H-tensor formalism is associated with the
single gauge-fixing condition (6.2) applied to the specific generalized Riemannian affine
connection (Γg,

Γ̂gφ). There was no apparent role for the generalized affine curvature
(Ωg,

Γ̂gΦ) to play in the new affine formulation. However, we showed in Section 5 that the
translational affine curvature can be used to reconstruct the Lanczos Lagrangian (1.5) in
terms of affine invariants. The essential field equations resulting from the affine variational
principle were the Riemannian Bianchi and Bach-Lanczos identities. The “Riemannian
Bianchi Identity” constraint Hµνκ∇λR

∗
µν

∗
κλ occuring in (1.5) was reexpressed in Section 5

in terms of the translational curvature as Hµνκ(Γ̂gΦ
∗
µ
∗
νκ) where Φ

∗
µ
∗
νκ is a certain double-dual

17



(2.15) of the translational curvature. This seems a rather minimal role for the geometrical
object that plays such a prominent role in gauge theories.

In order to see what more significant role might be available for the translational
curvature we consider a unified theory of gravitation and electromagnetism which has
been proposed recently8. The geometrical arena for this theory is another affine frame
bundle A1M over a four-dimensional spacetime manifold (M, g). The structure group of
A1M is the Poincaré group P (4) = O(1, 3) ©s R4∗ and A1M is a trivial R4∗ principal
bundle over the linear orthonormal frame bundle OM. In particular, a point of A1M is a
triple (p, eµ, t̂) where p ∈ M , (eµ) is an orthonormal linear frame at p, and t̂ is an affine
cotangent vector at p. Thus a cotangent vector s induces a translation of the form
t̂ −→ t̂ ⊕ s that is the analogue of the translations Γ̂ −→ Γ̂ ⊕ A used above for linear
connections thought of as affine tensors.

A generalized affine connection on A1M corresponds to a unique pair ({ µ
νκ}, t̂Kµν)

on M, and conversely. The associated curvature of the generalized affine connection can
thus be expressed as the pair (Rµνκ

λ, t̂Φµνκ) on M, and the translational component of
the curvature can be written in terms of the connection as

t̂Φµνκ = ∇µ(t̂Kκν)−∇ν(t̂Kκµ) (6.4)

in any translational gauge t̂. In the P(4) theory the Maxwell field strength Fµν is identified
with the translational component of the affine connection in a certain gauge 0̂ that is defined
physically in terms of the observational meaning of the Lorentz force law. In this 0̂ gauge
the translational component 0̂Kµν of the affine connection is defined as 0̂K(µν) = 0 and
0̂K[µν] = −Fµν . It follows [12] that with this identification an affine geodesic equation is
equivalent to the Lorentz force law. Furthermore, the source-free Maxwell equations

(a) ∇µFν
µ = 0 , (b) ∇[µFνλ] = 0 , (6.5)

can be geometrized completely in terms of the components of the translational part of the
generalized affine curvature 0̂Φµνκ. Indeed, it follows directly from (6.4) and 0̂Kµν = −Fµν

that (6.5a) and (6.5b) can be rewritten as

(a) 0̂Φµν
µ = 0 , (b) 0̂Φ[µνκ] = 0 (6.6)

Let us now return to the affine geometry of linear connections discussed in this paper.
We recall that in reformulating the Lanczos H-tensor structure for Riemannian geometries
we chose the Riemannian connection Γg to be the origin Γg −→ Γ̂g in the affine space of
linear connections, and relative to this choice of origin we chose the special Riemannian
affine connection ({ µ

νλ}, Γ̂gKµνκ
λ) where Γ̂gKµνκ

λ = Rµνκ
λ. Hence the associated affine

curvature was given by the pair (Rµνκ
λ, Γ̂gΦµνκλ

ρ) where (see (2.14))

Γ̂gΦµνκλ
ρ = 2∇[µRν]κλ

ρ . (6.7)

If we pursue the obvious parallel between the structure of this geometry and the
geometry of the P(4) theory described above we are led to consider the analogues of the
R4∗ field equations (6.6a) and (6.6b), namely

(a) Γ̂gΦµν
µ
· λ

ρ = 0 , (b) Γ̂gΦ[µνκ]λ
ρ = 0 . (6.8)
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respectively. It follows directly from (6.7) that equations (6.8) are equivalent to

(a) ∇µRλ
ρ
· ν

µ = 0 , (b) ∇[µRνκ]λ
ρ = 0 . (6.9)

Clearly (6.9b) is the full uncontracted Riemannian Bianchi Identity. The equations (6.9a)
and (6.9b) taken together are precisely the source-free field equations of Yang’s gravita-
tional gauge theory [13] of the non-integrable phase factor. We have shown that these
equations can be geometrized in a natural way in terms of the translational component
Γ̂gΦµνκλ

ρ of the affine curvature. Moreover, these source-free gauge field equations arise
in a manner which is completely analogous to the way the Maxwell equations arise in the
P(4) theory.

We remarked in Section 5 that the field equations derived from the affine variational
principle based on (5.1)-(5.6) do not determine the origin Γ̂0 in the affine space of linear
connections. In the variational principle we chose Γ̂0 = Γ̂g on the basis of simplicity so as to
not introduce any additional unknown structure into the theory, but the affine Lagrangian
(5.1)-(5.6) does not determine the “origin field = metric connection” but led instead to
Riemannian curvature identities. This is in harmony with the Lanczos method of studying
the structure of all 4 dimensional Riemannian geometries, since the field equations derived
from the Lanczos Lagrangian (1.5) also leave the metric connection undetermined. One can
only determine the metric from a definite set of field equations. In this affine setting Yang’s
source-free field equations represent equations determining the origin Γ̂g in the affine space
of connections. Thus although numerous objections have been raised9 to Yang’s theory as
a theory of gravitation, our results above indicate that perhaps some version of the theory
may yet be useful in a generalized affine theory of linear connections.

APPENDIX

In this appendix we introduce certain notations and conventions which are used
throughout this paper. Let M denote a four-dimensional spacetime manifold with metric
tensor g = (gµν) of signature -2. Throughout this paper we follow the conventions of Synge

[20] relating to Hodge duals. In particular, the dual F
∗
µν of an antisymmetric tensor Fµν is

defined by F
∗
µν = (1

2 )ηµναβFαβ . Here ηµναβ is the permutation tensor based on the metric
tensor g defined so that it satisfies ηµναβηµνσρ = −2

(
δα
σ δβ

ρ − δα
ρ δβ

σ

)
.

In 1962 Lanczos [3] showed that the conformal tensor could be written as

Cµναβ = (∇βHµνα −∇αHµνβ +∇νHαβµ −∇µHαβν)

− (
1
2
) (gµα(Hνβ + Hβν)− gµβ(Hνα + Hαν))

− (
1
2
) (gνβ(Hµα + Hαµ)− gνα(Hµβ + Hβµ))

+ (
1
3
)(gµαgνβ − gµβgνα)Hσ

σ

(A1)

where Hµνα = −Hνµα is the Lanczos tensor and Hνβ = ∇αHν
α
·β−∇βHνα

α. The H-tensor
that appears in (A1) is assumed to also satisfy the algebraic condition H[µνα] = 0.
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In this paper we deal with rank-four tensors which, initially, do not necessarily have
any specific index symmetries. It is convenient to have an operation that converts a
given tensor Bµναβ into a new tensor with the index symmetries of the curvature tensor.
Following Lanczos [3] we define a “bracket operation” on rank four tensors as follows:

[Bµναβ ] = (
1
8
) (Bµναβ −Bνµαβ + Bαβµν −Bαβνµ + Bνµβα

−Bµνβα + Bβανµ −Bβαµν + (
1
3
)ηµναβ(ηθφσρBθφσρ)

 (A2)

More details about this operator can be found in the paper by Bampi and Caviglia [9].
We note that it follows from (A2) that the new “bracketed object” [B] has the index
symmetries of the Riemannian curvature tensor and satisfies [B][µνα]β = 0. The numerical
factors used in (A2) guarantee that if Bµναβ = Rµναβ , then [Bµναβ ] = Rµναβ .

In order to parallel the decomposition given in (1.3), we split the bracket operation
defined in (A2) into two pieces, namely [Bµναβ ] = C [Bµναβ ] + L[Bµναβ ] where C [ ] is a
conformal, or trace-free part, and L[ ] denotes a local, or trace part. Specifically, these
quantities are defined by

C [Bµναβ ] = [Bµναβ ] + 2[gµα[Bνβ ]]− (
1
3
)[gµαgνβ [B]] (A3)

L[Bµναβ ] = −2[gµα[Bνβ ]] + (
1
3
)[gµαgνβ [B]] (A4)

In these relations we have used the definitions [Bνα] = gµβ [Bµναβ ] and [B] = gνα[Bνα].
C [Bµναβ ] has the same index symmetries as the conformal curvature tensor.

Next we consider a rank three tensor Aµνα that satisfies Aµνα = −Aνµα. Following
Bampi and Caviglia [9] we define a related tensor Ãµνα by

Ãµνα = Aµνα + (
1
6
)ηµναβ(ηγδσβAγδσ) (A5)

This associated tensor has the additional index symmetry Ã[µνα] = 0. It is straight forward
to show using (A2) that

[∇βAµνα] = [∇βÃµνα] (A6)

Moreover, calculating C [∇β(4Hµνα)] using (A3) we may rewrite (A1) in the forms

Cµναβ = 4C [∇βHµνα]

= −4C [∇µHαβν ]
(A7)
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FOOTNOTES

1. Department of Physics, Box 8202, North Carolina State University, Raleigh, NC 27695-
8202.

2. Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC
27695-8205.

3. For a discussion of Pontrjagin classes see, for example, Nash and Sen [5].

4. Lanczos [3] showed that the extra degrees of freedom associated with Hµνλ could be
eliminated by imposing the gauge conditions H[µνλ] = 0, Hµν

µ = 0, and ∇λHµν
λ = 0.

Neverthess, for the sake of generality we shall assume throughout this paper that Hµνλ

satisfies only the first of these three conditions.

5. Exact solutions for the Lanczos tensor within the context of Einstein’s general theory
of relativity have been derived by Takeno [6] and Novello and Velloso [7]. There has been
a large amount of more recent interest in the Lanczos formalism and the reader is referred
to the papers by Atkins and Davis [8], Bampi and Caviglia [9], Roberts [10] and references
therein.

6. See, for example, Dodson and Posten [14] for an introduction to affine spaces.

7. An affine variational principle which yields the coupled Einstein-Maxwell affine field
equations associated with the P(4) theory of gravity and electromagnetism has been de-
veloped by Chilton and Norris [16].

8. The P(4) theory was originally introduced by Norris [12] in 1985. Further developments
can be found in the works by Kheyfets and Norris [17], Chilton and Norris [16] and Norris
[18].

9. See, for example, the discussion by Fairchild [19].
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