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1 Background Material.

Before we begin our study of symplectic geometry we need to first review
the essentials of the Lagrangian and Hamiltonian formulations of classical
mechanics. This review will serve as a motivation for the introduction of
symplectic geometry. Our initial goal here is to gain a broad overview of
classical mechanics, and to see how the mathematical theory of symplectic
geometry unifies and clarifies the classical picture.

Classical mechanics – a simple picture

The non-relativistic classical universe is composed of point masses,
and composite systems made up of point masses. Each point mass is char-
acterized by its mass m and the Cartesian coordinates (x, y, z) of the loca-
tion of the point mass. The configuration of a system of N point masses
m1, . . . ,mN is given by the 3N Cartesian coordinates

(x1, y1, z1), (x2, y2, z2), . . . , (xN , yN , zN )

of the masses.
Often it is convenient to specify the configuration of the system in terms

of other parameters, called generalized coordinates, instead of using
Cartesian coordinates. For example it is often convenient to use spherical
coordinates (ρ, θ, φ), cylindrical coordinates (r, θ, z), or any other coordinate
system that is well-suited to the symmetry of the system. Moreover, when
the system is subject to contraints so that the 3N Cartesian coordinates are
not all independent, it is often necessary to use generalized coordinates. As
we will see the proper way to model such configuration spaces is to consider
them as differentiable manifolds.

A system is said to have n degrees of freedom if n is the least number
of parameters necessary to specify the configuration of the system. The con-
figuration of a system with n degrees of freedom is specified by n generalized
position coordinates (qi) , i = 1, 2, . . . , n, and all quantities, including the
Cartesian coordinates (xA, yA, zA) , A = 1, 2, . . . , N , are to be expressed in
terms of the generalized coordinates. Thus the kinetic energy T of the
system,

T = (1/2)
N∑

A=1

mAδµν
dxµ

A

dt

dxν
A

dt

= (1/2)
N∑

A=1

mA

{(
dxA

dt

)2

+
(

dyA

dt

)2

+
(

dzA

dt

)2
}

(1)
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is transformed into a function

T (qi, q̇i) (2)

of the generalized coordinates. Similarly the potential energy V of the
system becomes

V = V (qi, q̇i) (3)

In these equations we are using the standard notation q̇i = dqi

dt to denote
differentiation with respect to time.

The Lagrangian of the system is defined by

L = T − V , (4)

and the equations of motion of the system are the Euler-Lagrange equa-
tions

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , i = 1, 2, . . . , n . (5)

Alternatively, we may describe the dynamics of the system in the Hamil-
tonian formalism. From (refkenetic energy)-(4 ), we define the generalized
momenta by

pi =
∂L

∂q̇i

=
∂

∂q̇i
(T − V ) , i = 1, 2, . . . , n (6)

This definition is the generalization of the definition in Cartesian coordinates

pxA = mAẋA =
∂T

∂ẋA
, A = 1, 2, . . . , N , (7)

for systems for which the potential energy V is velocity-independent and
thus satisfies ∂V

∂q̇i = 0 , i = 1, 2, . . . , n.
We now define the Hamiltonian H of the system as the energy function

T + V expressed in terms of the 2n generalized position and momentum
coordinates,

H = H(qi, pj) . (8)

(More generally one constructs H using the Legendre transformation; see
Section 4.)

In order to construct the Hamiltonian H from the data given in equations
(1)-(4 ) we must be able to solve equations (6) for the pi in terms of the qi
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and q̇i. The condition that guarantees that this may be done is that the so-
called Hessian determinant associated with a Lagangian be non-zero. When
this condition is satisfied by a particular Lagrangian we say the Lagrangian
is regular (see section 4).

In terms of the Hamiltonian function H the equations of motion, Hamil-
ton’s equations, become

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi

i = 1, 2, . . . , n (9)

Hamilton’s equations are a generalization of Newton’s equations of dynam-
ics, and when the coordinates are Cartesian equations (9) of Hamilton reduce
to Newton’s dynamical equations.

Hamilton’s equations form a system of 2n ordinary differential equations
of the first order for the 2n unknown functions qi(t), pj(t) , i, j = 1, 2, . . . , n .
Given the initial values of these 2n functions at some instant t0, the stan-
dard existence and uniqueness theorems in the theory of ordinary differential
equations guarantee that Hamilton’s equations possess a unique solution on
some time interval containing t0. That is to say, given the initial values
of the generalized coordinates and momenta Hamilton’s equations (9) com-
pletely specify the position and momentum coordinates at all other times
t ∈ (t0, t0 + c) for some constant c > 0.

In classical mechanics dynamical quantities such as energy, angular
momentum, etc., are called dynamical observables, and when the La-
grangian is regular (or by fiat) classical observables are well-defined functions
of the generalized coordinates. Thus if we are given the initial values of the
dynamical observables at t0, the subsequent behavior and properties of the
system are completely determined by Hamilton’s equations. The fundamen-
tal laws of classical mechanics are therefore completely deterministic.

REMARKS:

• The above description of classical mechanics is clearly non-relativistic. We
will shortly consider the transition to a relativistic formulation.

• Note that in the above description the “Lagrangian” formalism is de-
emphasized while the “Hamiltonian” formalism is emphasized. This is be-
cause in the traditional “canonical quantization scheme” one needs to start
the quantization procedure with a Hamiltonian rather than a Lagrangian. Of
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course, if one has a regular Lagrangian then one can always construct a cor-
responding Hamiltonian, and this “regularity” condition is assumed above
in passing from the Lagrangian (4) to the Hamiltonian (8). There are, how-
ever, interesting and important cases (usually associated with constraints)
where the Lagrangian is not regular, and the study of such non-regular sys-
tems leads to the theory of Dirac brackets and constrained systems. In this
course we will mainly avoid such systems and as far as is possible develop
the theory for regular Lagrangians . There are two reasons for restricting
attention to regular Lagrangian systems as much as possible. The first rea-
son, of course, is that the theory is much simpler for regular Lagrangians,
and in order to gain the broad overview we are after one wants to restrict to
the simpliest situation for a first look. The second reason is that when all
Lagrangians are regular, then we may immediately go over to the Hamilto-
nian picture for all cases. As we shall see, this corresponds to the fact that
all regular Lagrangians (on, say, the tangent bundle TM of configuration
space M) define the same symplectic structure (on the cotangent bundle
T ∗M). This is one of the most fundamental aspects of the symplectic ge-
ometry approach to classical mechanics in that it brings order and clarity
to the entire subject. We will return to this important point later.

From the simple picture of classical mechanics presented above we can
extract some very general principles upon which the theory is founded.
From the Lagrangian point of view the dynamics of a classical system is
determined, via the Lagrange equations, once the Lagrangian of the system
is given . The Lagrangian L = T − V for, say, N point masses always
includes the same kinetic energy term T (equation (1)), and so different
systems of N point masses will differ only in the potential energy term
V (equation (3)) assumed for the systems. If we assume, as is usually
done, that L depends only the coordinates and velocities, and that these
quantities are free to vary independently, then the proper geometrical
arena for Lagrangian mechanics is the 6N-dimensional tangent bundle TM
of the 3N-dimensional configuration space M . The velocity phase space
TM is the manifold whose points are pairs (q,~v) for q ∈ M and ~v a tangent
vector to M at q. Thus the Langrangian of a classical system should be
thought of as a function

L : TM −→ R . (10)

The point I want to stress here is that classical Lagrangian mechanics can
be considered geometrically as the study of functions of the type given in
equation (10) together with the associated Lagrange equations on TM . We
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can, at least initially, forget about most of the explicit details of particu-
lar Lagrangians, and study the geometry on TM implied by the Lagrange
equations. However, suppose one’s goal is to study quantization. The tradi-
tional approach to quantization is “canonical quantization” which is based
on Hamiltonian rather than Lagrangian mechanics. Thus rather than con-
centrating on the geometry associated with Lagrangian mechanics one would
need to concentrate on the geometry associated with Hamiltonian mechan-
ics.

larry
If the Lagrangian is regular then, as remarked above, the prescription

given in equations (6)-(8) allows us to go over to the Hamiltonian formal-
ism. In this picture the dynamics of a classical system is determined, via the
Hamilton equations, once the Hamiltonian of the system is given . Hamilto-
nians (expression (8)) derived from regular Lagrangians depend on the coor-
dinates qi and the momenta pi, and these quantities are assumed to be free
to vary independently. Typically the conjugate momenta pi correspond to
covariant vectors whereas the velocities q̇i correspond to contravariant
vectors. The conclusion is that the proper geometrical arena for the Hamil-
tonian mechanics of an N-particle system is the 6N-dimensional cotangent
bundle T ∗M of the 3N-dimensional configuration space M . The momen-
tum phase space T ∗M is the manifold whose points are pairs (q, β) for
q ∈ M and β a covector at q. Classical Hamiltonians derived from regular
Lagrangians therefore can be thought of as functions

H : T ∗M −→ R . (11)

Thus classical Hamiltonian dynamics can be considered as the study of func-
tions of the type given in (11) together with the geometry on T ∗M implied
by Hamilton’s equations. This geometry, as we shall see, is symplectic ge-
ometry. Moreover, the symplectic geometry formulation of classical Hamil-
tonian dynamics is well-suited to study the traditional “canonical quanti-
zation” scheme, and such an approach leads to the theory of geometric
quantization due to B. Kostant and J-M. Souriau.

To study the foundations of Hamiltonian mechanics we can temporarily
ignore most of the explicit details of particular Hamiltonians and study the
general geometrical features implied by the Hamilton equations. We can,
moreover, forget about deriving Hamiltonians from regular Lagrangians and
simply start with functions of the type given in (11). We will not be able
to do this completely (e.g. Hamilton’s principle requires us to start with a
Lagrangian), but this will be our initial approach.

7



If we are going to work with arbitrary Hamiltonians on T ∗M we will
eventually need to select particular Hamiltonians in order to test and apply
the theory. Thus we need to consider what types of Hamiltonian systems one
should consider in both classical and quantum particle mechanics. Although
there is no exhaustive list of allowable Hamiltonian systems, the following
“short list” will suffice.

1. The Free particle in flat spacetime.

2. The single particle non-relativistic harmonic oscillator.

3. The Free particle in a curved spacetime (the gravitational interaction).

4. The charged particle in flat spacetime (the electromagnetic interac-
tion).

5. The charged particle in Einstein-Maxwell spacetimes (combined grav-
itational and electromagnetic interaction).

These test cases are the fundamental classical models that one needs to
consider. Presumably, more complicated models can be built up from these
(and other) simple models.

Finally, we need to make explicit an assumption that is implicit in the
structure of classical mechanics. We assume that the points of the classical
universe can be modeled as the points of a differentiable manifold. This
is the most general model that has been devised that also agrees well with
classical experience.

EXERCISES:

1. The Hamiltonian function of a system is

H =
1

2m
(p2

1 + p2
2 + p2

3) + V (q1, q2, q3) .

Obtain Hamilton’s equations and interpret them. In particular, if the
coordinates (qi) are Cartesian, how are Hamilton’s equations related
to Newton’s equations of motion?
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2. The motion of a point mass m in a central potential field V (r) is
described in spherical polar coordinates (r, θ, φ). If these are taken
as generalized coordinates, define the corresponding generalized mo-
menta, the Hamiltonian function, and derive Hamilton’s equations.

3. Work out the Lagrangian and Hamiltonian descriptions of the 1-dimensional
non-relativistic harmonic oscillator.

4. Find the Lagrangian for a non-relativistic charged particle moving
under the influence of combined electric and magnetic fields ~E and ~B.
Obtain the Hamiltonian and show that the Hamilton’s equations are
equivalent to the Lorentz force law.

5. Show that the configuration space for the double pendulum (moving
in a single vertical plane) is a torus.
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2 Hamilton’s Principle.

We have seen that in the Lagrangian formulation of classical mechanics one
studies Lagrangians

L : TM −→ R

and the associated geometry and dynamics implied by the Lagrange equa-
tions. Moreover, the basic mathematical assumption is that configuration
space M is a differentiable manifold. Let us be more precise about the
underlying framework.

NOTATION:

M = configuration space

= set of all allowed configurations
= an n-dim differentiable manifold (12)

A = the complete C∞ atlas for M

= {(Uα, µα) | α ∈ J} (13)

where, for each α ∈ J , J an index set,

(i) Uα ⊂ M

(ii) M = ∪α∈JUα

(iii) µα : Uα → µα(Uα)
open
⊂ Rn is a bijection

(iv) if Uα ∩ Uβ 6= ∅ then the maps (14)

µβ ◦ µ−1
α and µα ◦ µ−1

β

are C∞ Cartesian maps.

Each pair (Uα, µα) ∈ A is a local chart for M , and each x ∈ M is
contained in at least 1 chart domain Uα. Given (Uα, µα) we define the
associated R-valued coordinate functions xi

α , i = 1, 2, . . . , n by

µα(x) = (x1
α(x), x2

α(x), . . . , xn
α(x)) .

Thus xi
α = proji ◦ µα where proji is the projection onto the ith coordinate

in Rn. Generally we will drop the subscript labeling which local chart and
write simply (U, µ) for a chart and (xi) for the coordinate functions.
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TM = {(x,~t)|x ∈ M ,~t ∈ TxM }
= velocity phase space

= set of kinematically possible states of motion
= the 2n-dim tangent bundle of M (15)

The tangent bundle TM has a projection map π : TM → M which is defined
by

π(x,~t) = x .

The local coordinates (xi) are generalized coordinates for the configu-
ration space M . We use these coordinates to define standard velocity
phase space coordinates (qi, vj) on TM

π−→M as follows.
Let U be the chart domain and set Û = π−1(U) ⊂ TM . Define coordi-

nate functions (qi, vj) , i, j = 1, 2, . . . , n by

qi(x,~t) = xi ◦ π(x,~t)
= xi(x) (16)

vj(x,~t) = dxj(~t) (17)

for each point (x,~t) ∈ Û ⊂ TM . Thus the coordinates qi are the coordinates
xi pulled up to TM and assign local coordinates to the first factor in (x,~t);
the functions vj assign as coordinates of the second factor ~t in (x,~t) the
components of ~t with respect to the coordinated linear frame field ( ∂

∂xi ).
For such standard coordinates on TM the functions qi are the generalized
coordinates while the funcitons vj are generalized velocities.

Now that we have the basic mathematical model TM
π−→ M , if TM is

the set of kinematically possible states of motion, we next want to know
how to determine the dynamically possible states of motion for a classical
system with configuration space M .
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Hamilton’s Principle: The dynamical behavior of a classical system is
completely determined by the Lagrangian L : TM → R (L ∈ C∞(TM) and
L = T − V for conservative systems.) The dynamical trajectories are the
solutions of the variational equation δI[γ] = 0 where I[γ] is the functional

I[γ] =
∫ t2

t1

L(qi,
dqi

dt
)dt

where the variation is over all curves γ : [t1, t2] → M with fixed endpoints
γ(t1) , γ(t2).

As is well-known the variational equations are equivalent to the Euler-
Lagrange equations

dqi

dt
= vi (18)

d

dt
(
∂L
∂vi

)− ∂L
∂qi

= 0 (19)

REMARK: In the statement of Hamilton’s principle the notation L(qi, dqi

dt )
is shorthand notation for

L(qi, vi) ◦ γ̃ ≡ γ̃∗(L) ,

where the curve
t → γ̃(t) ≡ (γ(t), γ̇(t))

is the lift of the curve t → γ(t) on M to TM . Similarly, the equations
(18) and (19) are equations on the tangent bundle TM . They are often
abbreviated as

d

dt
(
∂L
∂q̇i

)− ∂L
∂qi

= 0 ,

but we prefer equations (18) and (19) since they emphasize that the domain
is TM . After solving equations (18) and (19) on TM for a curve γ(t), the
dynamical trajectory on M is then given by π ◦ γ(t) = (xi(t)).

REMARK: Note that the equations (18) and (19) depend explicitly on
the choice of coordinates (qi, vj). We now indicate how we may remedy this
situation. The goal is to find an invariantly defined vector field XL on TM
such that the differential equations for the integral curves of XL are precisely
the Lagrange equations (18) and (19) in local coordinates. Our discussion
will initially be a local one based on the coordinates (qi, vj). At the end of
the discussion we will indicate briefly how one obtains the invariant global
generalization.
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2.1 The Euler-Lagrange Equations Are Covariant

Since the Euler-Lagrange equations are derived from a coordinate indepen-
dent variational principle, the equations themselves must be coordinate in-
dependent, which of course means ”covariant” in the language of tensors.
We show how this works by considering two special cases.

1. We suppose the Lagrangian is given in Cartesian coordinates (yi) in
R3 by

L =
1
2
mgij ẏ

iẏj − V (y) (20)

where here gij = δij = diag(1, 1, 1) are the components of Euclidean
metric tensor in rectangular coordinates. In this case the Euler-Lagrange
equations

d

dt

(
∂L
∂ẏi

)
=

∂L
∂yi

(21)

reduce to
d

dt

(
mδij ẏ

j
)

= −∂V

∂yi
(22)

In this ”conservative system” the vector force on the particle is ~F =
F i ∂

∂yi = −δij ∂V
∂yj

∂
∂yj . So using the inverse metric δij we may rewrite

equation (22) as
d

dt

(
mẏj

)
= F i (23)

or, in vector notation as
m~a = ~F (24)

Hence we have the result that the Euler-Lagrange equations, when
applied to the Lagrangian of a conservative system written in rectan-
gular coordinates, reproduces Newton’s second law of motion relative
to the rectangular coordinate system that one identifies with the iner-
tial frame defined by the distant stars.

2. We suppose the Lagrangian is given in an arbitrary curvilinear coor-
dinate system (xi) in R3 by

L =
1
2
mgij ẋ

iẋj − V (x) (25)
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where here gij are the NON-CONSTANT components of the Euclidean
metric tensor in the curvilinear coordinates. Since the metric tensor
transforms as a second rank tensor field, the components gij are given
by

gij = δab
∂ya

∂xi

∂yb

∂xj
(26)

In this case the Euler-Lagrange equations (21) reduce to

d

dt

(
mgij ẋ

j
)

= −∂V

∂xi
+

1
2

∂gab

∂xi
ẋaẋb (27)

Substituting d
dt(gij) = ẋk ∂gij

∂xk for the directional derivative of the com-
ponents of the metric tensor in this last equation we obtain

mgij
d

dt

(
ẋj
)

+ mẋk ∂gij

∂xk
ẋj = −∂V

∂xi
+

m

2
∂gab

∂xi
ẋaẋb (28)

Consider only the terms involving the derivatives of the metric tensor.
Arranging them both on the left hand side of the equation we have
the expression

m

(
ẋk ∂gij

∂xk
ẋj − 1

2
∂gab

∂xi
ẋaẋb

)
(29)

Next relabel the velocity vectors in the first term to agree with the
labeling scheme in the second term, and factor out 1

2 ẋaẋb:

m

2

(
2
∂gib

∂xa
− ∂gab

∂xi

)
ẋaẋb (30)

Notice that the factor ẋaẋb is symmetric in the indices a and b. Hence
the terms multiplying it must also be symmetric in a and b, since for
any object Aab we have

2ẋaẋbAab = ẋaẋbAab + ẋaẋbAab

= ẋaẋbAab + ẋbẋaAba relabel indices in 2nd term

= ẋaẋbAab + ẋaẋbAba use symmetry of ẋaẋb

= ẋaẋb (Aab + Aba) factor out ẋaẋb

Applying this formula to the term 2∂gib
∂xa ẋaẋb in (30) above we may

rewrite (30) as
m

2

(
∂gib

∂xa
+

∂gia

∂xb
− ∂gab

∂xi

)
ẋaẋb (31)
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Solving the definition

Γj
ab =

1
2
gji

(
∂gib

∂xa
+

∂gai

∂xb
− ∂gab

∂xi

)
for the terms in parentheses on the right hand side we find

1
2

(
∂gib

∂xa
+

∂gai

∂xb
− ∂gab

∂xi

)
= gijΓ

j
ab

Substituting this result into the expression (31) we find that those
terms may be rewritten as

m

2

(
∂gib

∂xa
+

∂gai

∂xb
− ∂gab

∂xi

)
ẋaẋb = mgijΓ

j
abẋ

aẋb (32)

Finally substituting this expression for the two terms involving the
derivatives of the metric tensor components in (28) above we arrive at
the equation

mgij
d

dt

(
ẋj
)

+ mgijΓ
j
abẋ

aẋb = −∂V

∂xi
(33)

Factoring out mgij on the left hand side of this equation we find

mgij

(
d

dt
ẋj + Γj

abẋ
aẋb

)
= −∂V

∂xi

Using the contravariant form of the metric tensor to eliminate the
factor gij on the left we find this equation can be put into the form

m

(
d

dt
ẋj + Γj

abẋ
aẋb

)
= −gji ∂V

∂xi

We recognize this equation as Newton’s second law of motion

m~a = ~F

where the components of the acceleration vector in the curvilinear
coordinates xi are given by

aj =
d

dt
ẋj + Γj

abẋ
aẋb

and the components of the force ~F are F j = −gji ∂V
∂xi .

These same equations would hold on a curved manifold with a non-flat
metric tensor with components gij in an arbitrary coordinate system.
The difference between the two situations is that the curvature tensor
of the flat metric tensor will vanish identically, but the curvature tensor
of the non-flat spacetime metric tensor will be non-zero.
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2.2 Symplectic geometry on TM defined by a regular La-
grangian

Thus consider the velocity phase space TM of a configuration space M for
a classical system with Lagrangian L = T − V : TM → R. Let (qi, vj) be
generalized coordinates on a subset Û of TM . Define the 1-form θL locally
by

θL = pidqi

pi =
∂L
∂vi

(34)

Then the 2-form ωL = dθL has the local coordinate expression

ωL = dpi ∧ dqi (35)

We seek the conditions that guarantee that ωL is non-degenerate in
the sense that

X ωL = 0 ⇐⇒ X = 0 (36)

for X a vector field on TM . The “hook” symbol is defined for a 2-form ω
by the equation

(X ω)(Y ) = 2ω(X, Y ) (37)

for vector fields X, Y .
Now if the functions (qi, pj) actually define a coordinate system on Û

then clearly ωL would be non-degenerate. For if (qi, pj) are coordinates then
any vector field X can be expanded as

X = Xi ∂

∂qi
+ Xi

∂

∂pi
(38)

where the functions Xi and Xi are the components of the vector field relative
to the coordinate system (qi, pj). Then from equations (35) and (38) we find

X ωL = Xidqi −Xidpi . (39)

Then ωL X = 0 ⇒ Xi = Xi = 0 for all i = 1, 2, . . . , n, which implies that
X = 0.

Hence, if (qi, pj) form a coordinate system on Û then ωL defined in
equation (35) will be non-degenerate. Given coordinates (qi, vj) and a La-
grangian L, the functions (qi, pj), where the pj are defined in (34), will
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defined a coordinate system on Û if the Jacobian of the coordinate trans-
formations

(qi, vj) −→ (qi, pj)

is non-singular. The Jacobian of this transformation is

J =
∂(qi, pj)
∂(qa, vb)

=

(
∂qi

∂qa
∂pj

∂qa

∂qi

∂vb

∂pj

∂vb

)

=

(
δi
a

∂pj

∂qa

0 ∂pj

∂vb

)

=

(
δi
a

∂2L
∂qa∂vj

0 ∂2L
∂va∂vb

)
(40)

Therefore J is non-singular if and only if

det
(

∂2L
∂va∂vb

)
6= 0 . (41)

Definition # 1: A Lagrangian L : TM → R is regular if it satisfies
equation (41).

We assume that L is regular. Thus L defines the forms θL and ωL and
a new coordinate system (qi, pj). The coordinate pi is referred to as the
momentum coordinate canonically conjugate to qi.

Next we define the energy function hL by

hL = vi ∂L
∂vi

− L = vipi − L (42)

Then the exterior derivative of hL reduces to

dhL = vidpi −
(

∂L
∂qi

)
dqi . (43)

We now have all the necessary pieces of the puzzle. Since ωL is non-
degenerate it gives a 1-1 correspondence between vector fields and 1-forms
on Û ⊂ TM . Thus if X is a vector field on TM then we may define a unique
1-form X̃ by the equation

X̃ = −X ωL . (44)
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Conversely, if λ is a 1-form on TM then we obtain a unique vector field λ̃
from the equation

λ = −λ̃ ωL . (45)

We may, if we wish, think of ωL as a sort of “skew-symmetric” metric tensor
field, although we will not emphasize this interpretation.

In particular, given the 1-form field dhL we define a unique vector field
XL by the equation

dhL = −XL ωL . (46)

At the end of this section we will derive this equation from Hamilton’s
principle.

Express XL in local coordinates as

XL = Xi ∂

∂qi
+ Xi

∂

∂pi

and expand both sides of equation (refx sub L defined) to obtain

vidpi −
∂L
∂qi

dqi = −Xidqi + Xidpi (47)

Equating coefficients of the independent 1-forms we obtain the pair of equa-
tions

Xi = vi (48)

Xi =
∂L
∂qi

(49)

Thus the vector field XL determined by equation (46) is

XL = vi ∂

∂qi
+

∂L
∂qi

∂

∂pi
(50)

expressed in the new coordinate system (qi, pj).
Now consider the integral curves of the vector field XL. Along an integral

curve γ(t) we have

XL(γ(t)) = γ∗(t)

= q̇i ∂

∂qi
+ ṗi

∂

∂pi
(51)
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Evaluating (refexplicit form of x sub L) along γ(t) and equating the result
with equation (refaaa) we obtain the differential equations

q̇i = vi (52)

ṗi =
∂L
∂qi

(53)

Since pi = ∂L
∂vi we see that these equations are the Euler-Lagrange equations

of motion (18) and (19).

SUMMARY: If L is a regular Lagrangian on TM then one may define
locally a closed, non-degenerate 2-form ωL and an energy function hL. This
data then determines a unique vector field XL on TM via the equation

dhL = −XL ωL , (54)

and the differential equations for the integral curves of XL are the Lagrange
equations.

REMARK: Our construction of θL, ωL, hL and XL depends explicitly on
the coordinates (qi, vj). However, the structure of the tangent bundle TM
of a manifold is such that it allows an invariant definition of all of these
quantities so that equation (54) actually defines XL globally and invariantly
on TM if the Lagrangian is regular. The structure of equation (54) is highly
geometrical and is intrinsically tied to the differentiable structure of M and
TM . Note, however, that if we fix M and then change from one system
with Lagrangian L1 to another system with Lagrangian L2, then the basic
structure of the equations change since the Lagrangians will define distinct
2-forms ωL1 and ωL2 .

Our goal in the next few sections will be to show that if we reformulate
everything on the cotangent bundle T ∗M , using the Legendre transforma-
tion, then the geometrical structure simplifies considerably in the sense that
all regular Lagrangians define the same fundamental 2-form, the canonical
symplectic 2-form, on T ∗M .

To derive equation (54) we first reformulate Hamilton’s principle as fol-
lows. With the Lagrangian L : TM → R given, the action functional is

I[γ] =
∫ 1

0
L(qi,

dqi

dt
)dt =

∫ 1

0
γ̃∗(L)dt (55)

where the curve
t → γ̃(t) = (γ(t), γ̇(t)) (56)
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is the lift of a curve t → γ(t) on M to TM . Note also that for convenience
we have normalized the limits of the integral in (55).

We define a variation of t → γ(t) with fixed endpoints to be a
1-parameter family of smooth curves

s → γs(t) (57)

satisfying the additional conditions

γs(0) = γ(0) , γs(1) = γ(1) (58)

for all appropriate values of the parameter s. We call the original curve
t → γ(t) the base curve. Associated with each such variation is a vector
field X(t) defined along γ(t) by

X(t) =
∂

∂s
(γs(t))|s=0 . (59)

REMARK: Note that the individual members γs(t) of each such 1-parameter
family of curves are points in an infinite dimensional manifold, namely the
manifold of all smooth paths on M . Given the “point” t → γ(t), a 1-
parameter family of curves (57) in M satisfying (58) is a “curve through the
point γ(t)”. The vector field X(t) along γ(t) defined in (59) above can then
be interpreted as a “tangent vector at the point t → γ(t)” in the infinite
dimensional space. Ideas of this type are central in the study of path and
loop spaces, loop groups, etc.. The topology on the infinite dimensional
path space is relatively complicated and we will not discuss it here.

Note that by lifting a 1-parameter family of curves γs(t) to TM according
to (56), we may then define a vector field X̃(t) along the lifted base curve
γ̃(t) by

X̃(t) =
∂

∂s
(γ̃s(t))|s=0 . (60)

EXERCISE: Show that in standard coordinates (qi, vj) on TM that

X̃(t) = Xi(t)
∂

∂qi
+ Ẋi(t)

∂

∂vi
. (61)

where X(t) is defined in (59).
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REMARK: The fact that the vertical components of the vector field X̃(t)
are the time derivatives of the “horizontal components” Xi(t) in (61) is the
analog of the formula

δq̇i =
d

dt
(δqi)

that occurs in classical derivations of Lagrange’s equations.

We now define the (first) variation of the action functional given in (55)
by

δI[γ] =
d

ds
I[γs]|s=0 =

∫ 1

0

∂

∂s
(γ̃∗s (L))|s=0dt (62)

EXERCISE: With the definitions as above, show that

∂

∂s
(γ̃∗s (L))|s=0 = γ̃∗(X̃(L)) . (63)

Using the result of this exercise in the first variation (62) we obtain

δI =
∫ 1

0
γ̃∗(X̃(L))dt =

∫
γ̃
X̃(L)dt . (64)

Thus Hamilton’s principle can be restated as: A curve t → γ(t) in M is a
dynamical trajectory iff ∫

γ̃
X̃(L)dt = 0 (65)

where X̃(t) =< X(t), Ẋ(t) > is any vector field along γ̃(t) = (γ(t), γ̇(t))
such that X(0) = 0 and X(1) = 0.

To derive the Langrange equations in the form (54) we need to reformu-
late the integrand in (65). The crucial point is that although we require,
for example, X(0) = 0, we do not know anything about Ẋ(0). The only
restriction is that the endpoints be fixed. To see what to do, not that

X̃(L) = X̃ dL

= X̃ (
∂L
∂qi

dqi +
∂L
∂vi

dvi) (66)

We need a way to eliminate the term involving dvi, since if we have∫
γ̃
X̃ (a horizontal 1-form)dt = 0 ,
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then we may conclude that the horizontal 1-form must vanish since its coef-
ficients would be the arbitrary Xi(t). What we need is an invariant version
of “integration by parts” that occurs at this step in the classical variational
principle. This brings us to the natural geometrical structures carried by the
tangent bundle of a manifold. General references: Crampin, M. and Thomp-
son,G., Affine bundles and integrable almost tangent structures, Math. Proc.
Camb. Phil. Soc. (1985), 98, pp 61-71; Woodhouse, N. Geometric Quanti-
zation, Oxford University Press, Oxford (1980).

We define a type (1,1) tensor field S on TM as follows. We consider S
as a vector-valued 1-form and define it by giving its values on vectors
tangent to TM. Thus if X is a tangent vector to TM at (p, w) then

S(X) :=
d

dt
(p, w + tdπ(X))|t=0 . (67)

EXERCISE: Show that in standard coordinates (qi, vj) on TM that S has
the local form

S =
∂

∂vi
⊗ dqi . (68)

The significance of this canonically defined tensor field on TM is the
following. For each function f : TM → R we use S to assign a unique
1-form θf defined by

Y θf = S(Y ) df (69)

for all tangent vectors Y on TM.

EXERCISE: Show that in standard coordinates (qi, vj) on TM that θf has
the explicit form

θf =
∂f

∂vi
dqi . (70)

LEMMA: A non-zero tangent vector X ∈ T(p,w)(TM) is vertical iff S(X) =
0.
PROOF: Left as an exercise.

We also need the Euler vector field on TM which is defined as follows.
First we define the vertical lift of a tangent vector Y ∈ TpM by the formula

Y v(p, w) :=
d

dt
(p, w + tY )|t=0 . (71)
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DEFINITION: The Euler vector field E on TM is the vector field defined
at (p, Y ) ∈ TM by

E(p, Y ) = Y v(p, Y ) . (72)

EXERCISE: Show that in local coordinates (qi, vj) on TM that the Euler
vector field has the expression

E = vi ∂

∂vi
. (73)

We use S and E in various ways. One such use is to characterize curves
on TM that are lifts of curves on M.

LEMMA: A curve t → σ(t) in TM is the lift of a curve t → γ(t) on M iff

S(σ∗(t)) = E(σ(t)) . (74)

Proof: Left as an exercise.

DEFINITION: For each function f : TM → R define the associated
Hamiltonian function hf by

hf := E(f)− f . (75)

The following lemma is the crucial one needed to complete the derivation
of equations (54).
LEMMA: If X is a vector field on TM such that S(X) = E , then for each
f : TM → R the 1-form

dhf + X dθf (76)

is horizontal.

Proof: See Woodhouse, Geometric Quantization, pp. 18.

REMARK: By the above lemma typical vector fields satisfying S(X) = E
are tangents to lifted curves.

We are now ready to derive (54) from Hamilton’s principle, which we
recall now has the form:

A curve t → γ(t) in M is a dynamical trajectory iff∫
γ̃
X̃(L)dt = 0 (77)
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where X̃(t) =< X(t), Ẋ(t) >, and X(t) is any vector field along γ(t) such
that X(0) = 0 and X(1) = 0.

In order to carry out the “integration by parts” on TM we first extend
X̃ and T̃ ≡ γ̃∗, originally only defined along γ̃(t) , off the curve to vector
fields X̃ and T̃ in such a way that

[X̃, T̃ ] = 0 , S(T̃ ) = E . (78)

We leave it as an exercise to show that this can be done. Note that for
the vector field T̃ we may simply take the tangent vectors to the curves
s → γs(t) defining a variation of the original curve.

Now consider the integrand in (65). We have

X̃(L) = X̃ dL
= X̃ d(E(L)− hL)
= X̃ d(E(L))− X̃ dhL (79)

Using (69) and (78) we have

d(E(L)) = d(E dL) = d(S(T̃ ) dL) = d(T̃ θL) . (80)

Using this back in (79) we obtain

X̃(L) = X̃ d(T̃ θL)− X̃ dhL . (81)

By definition we have the identity

LT̃ θL = T̃ dθL + d(T̃ θL) . (82)

Using this to rewrite the first term on the right hand side in (81) we have

X̃ d(T̃ θL) = X̃ (LT̃ θL)− X̃ (T̃ dθL)

= LT̃ (X̃ θL) + [X̃, T̃ ] θL − X̃ (T̃ dθL)

= T̃ (X̃ θL)− X̃ (T̃ dθL) (83)

We have used the identity (136) in Section 6 in going from line 1 to line 2
in equation (83). Substituting back into (81) we get

X̃(L) = T̃ (X̃ θL)− X̃
(
T̃ dθL + dhL

)
. (84)
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Substituting into (77) from (84) we obtain∫
γ̃
X̃(L)dt = 0

⇓

0 =
∫

γ̃
(T̃ (X̃ θL)dt−

∫
γ̃
X̃

(
T̃ dθL + dhL

)
dt . (85)

For the first integral we get∫
γ̃
(T̃ (X̃ θL)dt =

∫ 1

0

d

dt
(X̃ θL)dt

= (X̃ θL)|10
= 0 (86)

since θL is horizontal and the horizontal parts of X̃ vanish at the endpoints.
Moreover, the 1-form “hooked with X” in the remaining integral is horizon-
tal by (48). We conclude that a curve t → γ(t) is a dynamical trajectory
iff

(a) S(T̃ ) = E ,
(b) dhL + T̃ dθL = 0 (87)

These equations are equivalent to equations (54) plus the condition that the
dynamical trajectories are the integral curves of XL.

SUMMARY: The tangent bundle TM of a manifold M supports the canon-
ically defined (1,1) tensor field S and the canonically defined Euler vector
field E . For each Lagrangian f : TM → R we

A. first define the action potential 1-form θf by the formula

X θf = S(X) df (88)

for all vector fields X on TM. We then use θf to

B define the associated Lagrangian vector field Xf by the formula

d(E(f)− f) = −Xf dθf . (89)

C The vector field Xf will be unique if f is regular. Finally,

D the equations for the integral curves of the vector field Xf are the La-
grange equations for the Lagrangian f.
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3 The Cotangent Bundle of a Manifold

Before we can introduce the Legendre transformation we need some basic
facts about the structure of the cotangent bundle T ∗M of an n-dim dif-
ferentiable manifold M . We suppose that M is the configuration space of
some classical system.

T ∗M = {(x, λ) | x ∈ M , λ ∈ T ∗xM}
= momentum phase space

= set of all kinematically possible states of motion

= a 2n-dim differentiable manifold

The projection map π : T ∗M → M is defined by

π(x, λ) = x .

3.1 Standard coordinates on T ∗M

Let (U, µ) be a chart on M ; µ = (xi) , i = 1, 2, . . . , n. Define coordinates
(qi, pj) on Û = π−1(U) ⊂ T ∗M by:

qi(x, λ) = xi ◦ π(x, λ) = xi(x)

pj(x, λ) = λ(
∂

∂xj
) (90)

Thus the functions qi are essentially the same as the qi defined on TM
(except that the domains are different !), while the functions pj assign the
components of the covector λ, with respect to the basis of 1-forms dxi, as
the coordinates of the second factor in (x, λ). Although it is not obvious
from (90), we will see shortly that coordinates on T ∗M defined in this way
are canonical coordinates for many, but not all, classical systems with M
as configuration space.

The structure of the vector bundle T ∗M
π−→M is intimately connected

with the structure of M . This follows from the fact that a complete atlas
for T ∗M is standardly built up from local charts defined as in (90), which
in turn are based on the complete atlas A for M . The structure of the two
manifolds M and T ∗M implies the existence of a certain globally defined
1-form θ, the canonical 1-form, on T ∗M . We define θ by defining its values
on arbitrary vectors tangent to T ∗M . If X ∈ T(x,λ)(T ∗M), then

θ(X) := λ(dπ(X)) . (91)
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Another useful way of writing this equation is

X θ = (dπX) λ . (92)

REMARK: The definition (91) should be compared with the definition
of the soldering 1-form on the bundle of linear frames LM of M . We will
see later in this course that the soldering 1-form allows one to build up a
generalized symplectic geometry on LM .

DEFINITION #2: A vector X ∈ T(x,λ)(T ∗M) is vertical if dπ(X) = 0.

DEFINITION #3: A 1-form µ on T ∗M is horizontal if µ(X) = 0 when-
ever X is vertical.

Let us now work out the local coordinate expression for θ in a standard
coordinate chart (90). Note first that the basis vectors ∂

∂pj
are vertical, since

dπ(
∂

∂pj
)(xi) =

∂

∂pj
(xi ◦ π) (93)

=
∂

∂pj
(qi) (94)

= 0 (95)
(96)

Expressing θ in the chart (qi, pj) we have

θ = θidqi + θidpi . (97)

Then working at an arbitrary point (x, λ) ∈ Û we find for the components
θi

θi = θ(
∂

∂qi
|(x,λ))

= λ(dπ(
∂

∂qi
))

= λ(
∂

∂xi
)

= pi(x, λ) (98)
(99)
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where the last line follows from the definition (90). Similarly, for the com-
ponents θi we find

θi = θ(
∂

∂pi
|(x,λ))

= λ(dπ(
∂

∂pi
))

= 0
(100)

since the ∂
∂pi

are vertical. Thus in any local chart defined as in (90) we have

θ = pidqi . (101)

DEFINITION #4: The canonical symplectic 2-form ω on T ∗M is
ω := dθ. In local coordinates (90) it has the coordinate expression

ω = dpi ∧ dqi . (102)

REMARK: It is clear from the definition that ω is closed. Moreover, from
our earlier discussion it is also clear that ω is non-degenerate.

As we will see later when we use ω to write down Hamilton’s equations
on T ∗M , it is the simple form (102) of ω when expressed in the coordinates
(qi, pj) that implies the specific q̇i = ∂H

∂pi
and ṗi = −∂H

∂qi form of Hamilton’s
equations. This is the reason that the coordinates (qi, pj) are called canonical
coordinates. Generalizing we have

DEFINITION #5: Coordinates (ui, wj) on T ∗M are canonical coordi-
nates if the symplectic 2-form ω has the form

ω = dwi ∧ dui (103)

when expressed in these coordinates.

REMARK: This definition leads to the question: What is the group of
tranformations that transforms canonical coordinates to canonical coordi-
nates? That is to say, what is the group that preserves the form of equation
(103)? This group is the symplectic group SP(n,R), and although we
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will not discuss this group in detail now we can gain some insight into its
structure by recalling the definition of Killing vector fields.

If g is a metric tensor field on a manifold M then a vector field ξ is a
Killing vector field if

Lξ(g) = 0 , (104)

where the symbol Lξ denotes Lie differentiation. Generally Killing vector
fields do not exist, but when they do they express a certain symmetry of the
particular metric tensor that admits the Killing vector field. In particular, in
flat Minkowski spacetime the metric tensor admits a 10-parameter family of
Killing vector fields. This family of Killing vectors forms a Lie algebra under
the Lie bracket, the Poincaré Lie algebra p(4) = o(1, 3)⊕R4 of the Poincaré
group P (4) = O(1, 3) ⊗ R4. As is well known the P (4) transformations on
Minkowski spacetime are precisely those that preserve the form

(ηij) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


of the metric tensor when expressed in a Lorentzian chart on M . Those
transformation are composed of 3-space rotations, 4-space translations, and
the so-called ”boosts” relating observers moving with constant relative ve-
locity.

As remarked above symplectic group transformations preserve the ex-
plicit form (103) of ω under change of coordinates. Thus one might expect
that the symplectic group can be defined, at least locally, by requiring in
analogy with (104) the existence of vector fields X such that

LX(ω) = 0 . (105)

A vector field X that satisfies (105) is called a locally Hamiltonian vector
field, and as we will see later the flow of X does indeed define a local 1-
parameter group of local canonical transformations, and the set of all locally
Hamiltonian vector fields forms an infinite dimensional Lie algebra which is
fundamentally related to the Poisson brackets of Hamiltonian dynamics. We
will return to these ideas, and in particular equation (105), in detail later.
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4 The Legendre Transformation

Let M be the configuration space of a classical system with regular La-
grangian L, TM the velocity phase space and T ∗M the momentum phase
space. We now want to use L to set up a map ΛL : TM → T ∗M , called
the Legendre transformation, which will allow us to make the transition
from the Lagrangian to the Hamiltonian formalism. We begin by considering
some general ideas.

Suppose that f : TM → R is any smooth function on velocity phase
space. Then f can be used to define a map

Λf : TM → T ∗M

that is fibering preserving (i.e. Λf (TxM) ⊂ T ∗xM)). We map each point
(x, X) ∈ TM to the point (x, β(x,X)), and since β(x,X) is to be a covector at
x ∈ M we define it by prescribing its values on arbitrary vectors in TxM .
Thus

Λf ((x,X)) := (x, β(x,X)) (106)

where β(x,X) is defined by

β(x,X)(Y ) =
d

dt
(f(x,X + tY )) |t=0 ∀ Y ∈ TxM . (107)

Recalling the definition (71) of the vertical lift Y v of a vector Y ∈ TxM to
TM, we see that β(x,X) can also be defined by the formula

β(x,X)(Y ) = Y v(x,X) df , ∀ Y ∈ TxM . (108)

Observe that Λf is invariantly defined and is independent of any choice
of coordinates, but it depends explicitly on the choice of the function f .

Since Λf can be defined for any smooth f : TM → R we can evaluate
it for the specific choice f = L, and in this case ΛL is call the Legendre
transformation based on L. Thus

ΛL((x,X)) := (x, β(x,X)) (109)

where, from equation (107),

β(x,X)(Y ) =
d

dt
(L(x,X + tY )) |t=0 ∀ Y ∈ TxM . (110)
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We evaluate β(x,X) in local coordinates (qi, vj) on TM .

β(x,X)(Y ) =
d

dt
(L(x,X + tY )) |t=0

= { ∂L
∂vi

(x, X + tY )
d

dt
(vi(x,X + tY ))} |t=0

=
∂L
∂vi

(x,X)Y i)

=
∂L
∂vi

(x,X)dxi(Y ) (111)

Thus the covector β(x,X) ∈ T ∗xM has the coordinate expression

β(x,X) =
∂L
∂vi

(x,X)dxi . (112)

This expression is often abbreviated as

β(x,X) =
∂L
∂vi

dxi , (113)

but it is important to remember that the function ∂L
∂vi on the right hand side

of (113) is evaluated at the point (x, X) ∈ TxM .

EXERCISE: Show that ΛL is a local differomorphism iff L is regular.

To see why regularity only guarantees a local diffeomorphism, consider
the following 2-dim example:

L = ev1
cos(v2) .

This Lagrangian is regular since(
∂2L

∂vi∂vj

)
= −e2v1 6= 0 .

On the other hand the Legendre transformation for the momenta is

p1 ◦ ΛL = ev1
cos(v2)

p2 ◦ ΛL = −ev1
sin(v2)

(114)

which is clearly many-to-one. However, we may restrict the domain in T ∗M
so that the functions in equation (114) are one-to-one, and on this domain
λL will be a local diffeomorphism..
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EXERCISE: If L is not regular, is ΛL still well-defined?

In order to be able to distinguish between Lagrangians that induce Leg-
endre transformations that are diffeomorphisms, as opposed to local dif-
feomorphisms, we introduced the following definition (cf. R. Abraham
and J. Marsden, Foundations of Mechanics, second edition, 1978).

DEFINITION # 1-A: A Lagrangian L : TM → R is hyper-regular if
it is regular and the Legendre transformation ΛL : TM → T ∗M determined
by L is a diffeomorphism.

To summarize, if L is a hyper-regular Lagrangian then ΛL is a diffeo-
morphism, and in local coordinates (qi, vj) on TM and (qi, pj) on T ∗M we
have

ΛL(x,X) = (x, β(x,X)) = (x,
∂L
∂vi

(x,X)dxi) , (115)

qi(ΛL(x,X)) = qi(x, β(x,X)) = xi(x) , (116)

pj(ΛL(x, X)) = β(x,X)(
∂

∂xj
) =

∂L
∂vj

(x,X) . (117)

Therefore
(qi, pj) ◦ ΛL = (qi,

∂L
∂vj

) , (118)

and we have recovered the classical coordinate form of the Legendre trans-
formation.

A kinematically possible state of motion (x,X) ∈ TxM , representing a
velocity vector X at x ∈ M , is transformed into a kinematically possible
state of motion (x, ∂L

∂vj (x,X)dxj), which is the momentum covector at x
determined by the Lagrangian and the velocity vector X.

Given a hyper-regular Lagrangian L the Legendre transformation is a
fiber preserving diffeomorphism ΛL : TM → T ∗M . We can thus use (ΛL)∗
to push vectors tangent to TM over to T ∗M , and use (ΛL)∗ to pull back
forms on T ∗M to forms on TM . In particular, we can pull back the canonical
symplectic 2-form ω on T ∗M to obtain a 2-form (ΛL)∗(ω) on TM . We
evaluate (ΛL)∗(ω) in local coordinates (qi, vj) on TM and (qi, pj) on T ∗M .
(Note that we are using the same symbols qi for half of the coordinates
on both TM and T ∗M although technically they are different functions.)

32



With ω expressed as in (102) we find

(ΛL)∗(ω) = (ΛL)∗(dpi ∧ dqi)
= d((ΛL)∗(pi)) ∧ d((ΛL)∗(qi))
= d(pi ◦ ΛL) ∧ dqi

= d(
∂L
∂vi

) ∧ dqi

(119)

where the last line follows from (117). Then making use of equations (35)
we have

(ΛL)∗(ω) = d(
∂L
∂vi

) ∧ dqi

= d(
∂L
∂vi

dqi)

= d(θL)
= ωL (120)

REMARK: Suppose that L : TM → R is hyper-regular. What we have
shown is that (ΛL)∗(ω) is globally defined on TM , and it agrees with ωL
defined in (35) in local coordinates on TM . If we therefore take

ωL = (ΛL)∗(ω) (121)

as the definition of ωL, then

dhL = −XL ωL (122)

is equation (54) that was derived at the end of section 2. This equation
serves to define XL with hL defined invariantly using the definition (75).
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5 Hamiltonian Dynamics on Cotangent Bundles

Let M be the configuration space of a classical system with regular La-
grangian L, TM the velocity phase space and T ∗M the momentum phase
space. In this section we use the Legendre transformation ΛL : TM → T ∗M ,
to make the transition from the Lagrangian to the Hamiltonian formalism.

In sections 2-4 we showed that the Lagrange equations can be character-
ized invariantly on TM as the differential equations for the integral curves
of the vector field XL defined by

dhL = −XL ωL , (123)

where
ωL = Λ∗L(ω) (124)

and
hL = AL − L = E(L)− L . (125)

Our goal now is to reformulate these equations on T ∗M . The key mo-
tivating idea is that if L1 and L2 are regular Lagrangians on TM and ω is
the canonical symplectic form on T ∗M , then as we have seen earlier

ωL1 = (ΛL1)
∗(ω) and ωL2 = (ΛL2)

∗(ω) (126)

Thus each symplectic form ωL on TM defined by a regular Lagrangian is
the pull back of the canonical symplectic 2-form ω on T ∗M under a Legendre
transformation ΛL : TM− > T ∗M . Before discussing Hamilton’s equations
explicitly we consider some general features of the symplectic geometry de-
fined by ω.

Suppose that f : T ∗M → R is any smooth function on T ∗M . Then using
ω we can associate with the 1-form df a unique vector field on T ∗M .

DEFINITION #1: The vector field Xf on T ∗M defined by

df = −Xf ω (127)

is the (globally defined) Hamiltonian vector field determined by f .

REMARK: Recall that the “ left-hook product” used in equation (127) is
defined by

(X ω)(Y ) = 2ω(X, Y ) (128)
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for all vector fields X and Y .

REMARK: Equation (127) is the fundamental equation in symplectic ge-
ometry. Although it does not seem to have a name associated with it in the
literature, I will refer to it as the first structure equation of symplectic
geometry.

EXERCISE: Let (qi, pj) be canonical coordinates on T ∗M defined as in
equation (3.1). Show that Xf defined in equation (127) has the local coor-
dinate expression

Xf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
. (129)

EXERCISE: If Xf is the Hamiltonian vector field on T ∗M determined by
f : T ∗M → R, show that in canonical coordinates (qi, pj) the differential
equations for the integral curves of Xf are

q̇i =
∂f

∂pj

ṗi = − ∂f

∂qi

i = 1, 2, . . . , n (130)

REMARK: The reason we are considering arbitrary functions f : T ∗M →
R is that we want to consider the dynamics associated with arbitrary classi-
cal observables (linear momentum, angular momentum, etc.) in addition to
the dynamics generated by the Hamiltonian of a system. Note in particular
that in canonical coordinates the differential equations (130) for the integral
curves of any smooth f : T ∗M → R take the form of the classical Hamil-
ton equations (9) with the function f playing the role of the Hamiltonian.
The point I wish to emphasize here is that it is the 1st structure equation
(127) together with the assumption of canonical coordinates that lead to the
specific differential equations (130).

DEFINITION #2: If L : TM → R is hyper-regular then the associated
Hamiltonian function HL : T ∗M → R of the system is

HL = hL ◦ Λ−1
L . (131)

If the Lagrangian is regular then we replace Λ−1
L in the above equation with

(ΛL|U )−1 where U is an appropriate subset to ensure an inverse.
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Usually one denotes the Hamiltonian function by the symbol H rather
than by HL, and we will adopt this standard convention.

As a corollary to the above discussion we have that in canonical co-
ordinates on T ∗M the differential equations for the integral curves of the
Hamiltonian vector field XH defined by the dH = −XH ω take the form

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi
(132)

which are the standard Hamilton’s equations (9). We now show that if L
is regular then XL maps to XH under the differential dΛL of the Legendre
transformation. Let hL be regular and define XL by

dhL = −XL ωL . (133)

(See equation (2.26)).

LEMMA #1: If L : TM → R is regular then (dΛL)(XL) = XH .

Proof: Let Y be an arbitrary vector field on T ∗M . Then

(dΛL(XL)) ω)(Y ) = 2ω(dΛL(XL), Y )
= 2ω(dΛL(XL), dΛL ◦ dΛ−1

L (Y ))
= 2(Λ∗L(ω))(XL, dΛ−1

L (Y ))
= 2ωL(XL, dΛ−1

L (Y ))
= (XL ωL)(dΛ−1

L (Y ))
= −dhL(dΛ−1

L (Y ))
= −d(hL ◦ Λ−1

L )(Y )
= −(dH)(Y )

Since Y is arbitrary we obtain

dH = −(dΛL(XL)) ω ,

which implies dΛL(XL) = XH .

REMARK: This lemma shows that the dynamics encoded in XL on TM
is carried over to the the dynamics encoded in XH on T ∗M provided the
Lagrangian is regular. Put simply, the Lagrange equations describe the same
dynamics as do the Hamilton equations when the Lagrangian is regular.
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EXERCISE: Let M = R3 and L = (m/2)δijv
ivj be the Lagrangian for a

free Newtonian particle of mass m. Show that H = (m/2)δijpipj .

EXERCISE: Let M = R3 and L = (m/2)δijv
ivj − k(1/2)δijq

iqj be the
Lagrangian of the non-relativistic isotropic harmonic oscillator. Find H.
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6 The Poisson Algebra of C∞ Functions on T ∗M .

Two fundamental aspects of Hamiltonian dynamics that are central to both
the canonical quantization scheme and geometric quantization are the Pois-
son bracket and the related Lie algebraic structure of C∞ functions on T ∗M .
These ideas are introduced in this section along with some general facts re-
lating to canonical transformations.

Let µ denote a differential form and X a smooth vector field on T ∗M .
From differential geometry we have the following general formula that relates
the exterior derivative operator d, the Lie derivative operator LX , and the
(left) hook product :

LX(µ) = X d(µ) + d(X µ) . (134)

Consider a 2-form µ = µijdxi ∧ dxj and a vector field X = Xi ∂
∂xi in local

coordinates (xi) on a manifold M . Then equation (134), for µ a 2-form, can
be derived from the familiar local coordinate formula

LX(µij) = Xk ∂µij

∂xk
+ µkj

∂Xk

∂xi
+ µik

∂Xk

∂xj
(135)

for the Lie derivative LX(µ). Rewriting the second and third terms in this
equations using the identity

µkj
∂Xk

∂xi
=

∂

∂xi
(Xkµkj)−Xk ∂µkj

∂xi
,

and grouping terms, we have

LX(µij) = Xk(
∂µij

∂xk
+

∂µjk

∂xi
+

∂µki

∂xj
) +

∂

∂xi
(Xkµkj)−

∂

∂xj
(Xkµki)

= (X dµ)ij + (d(X µ))ij

which is equation (134) expressed in local coordinates.

We will also need the following general formula from differential geometry
which expresses the commutation relation between LX and Y . If µ is a
differential form and X and Y are smooth vector fields on a manifold M ,
then

LX(Y µ)− Y (LXµ) = [X, Y ] µ , (136)

where [X, Y ] denotes the Lie bracket of the vector fields X and Y (i.e. the
Lie derivative of Y with respect to X.)
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EXERCISE: Derive equation (136) in local coordinates using the local
coordinate formula

LZ(µi) = Zj∂j(µi) + µj∂i(Zj)

for the Lie derivative of a 1-form. Here I am using the notation ∂i = ∂
∂xi .

Now recall (see equation (105)) that a locally Hamiltonian vector
field X on T ∗M is a vector field X such that

LXω = 0 . (137)

Combining equations (134) and (137) and using the fact that ω is closed we
have that if X is locally Hamiltonian then

d(X ω) = 0 . (138)

This equation implies that X ω is a closed 1-form, and thus by the Poincaré
lemma locally there exists a function f such that

df = −X ω . (139)

REMARK: If the first (De Rham) cohomology group H1(T ∗M) of the
manifold T ∗M is trivial then all closed 1-forms are exact, and when this
is true the function f will be globally defined. However, H1(T ∗M) will
generally not be trivial for an arbitrary manifold.

Consider next a Hamiltonian vector field Xf on T ∗M determined by a
function f : T ∗M → R. By definition #5.1 Xf satisfies the equation

df = −Xf ω . (140)

Combining this equation with equation (134) we see that

LXf
ω = 0 . (141)

We have the result that each globally Hamiltonian vector field Xf is
locally Hamiltonian , but generally a locally Hamiltonian vector
field will not be globally Hamiltonian.

DEFINITION #1: The set of all locally Hamiltonian vector fields on
T ∗M is denoted by

LHV ≡ LHV (T ∗M) ,
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and the set of (globally) Hamiltonian vector fields on T ∗M is denoted by

HV ≡ HV (T ∗M) .

The following proposition is due to S. Sternberg (Lectures on Differential
Geometry, 1964.)

Proposition #1: If X, Y ∈ LHV (T ∗M), then [X, Y ] ∈ HV (T ∗M). In
particular, [X, Y ] = Xf where f = 2ω(X, Y ).

Proof: We need to show that if X, Y are locally Hamiltonian vector fields,
then there is a function f : T ∗M → R such that [X, Y ] ω = −df . Using
the identity (136) and the fact that LXω = 0 we have

[X, Y ] ω = LX(Y ω)− Y (LXω)
= LX(Y ω)

Now use the identity (134) and d(Y ω) = 0 to obtain

[X, Y ] ω = X d(Y ω) + d(X (Y ω))
= d(X (Y ω))
= d(−2ω(X, Y ))

Thus [X, Y ] is the Hamiltonian vector field on T ∗M determined by the
function f = 2ω(X, Y ) .

The importance of this proposition is that it reveals an underlying alge-
braic structure associated with Hamiltonian vector fields on T ∗M . Recall
that the set X (M) of all smooth vector fields on a manifold is an infinite
dimensional Lie algebra under the Lie bracket. That is to say, X (M) is an
infinite dimensional vector space, and the Lie bracket provides X (M) with
the following multiplication rule:

∀ X, Y ∈ X (M) (X, Y ) −→ [X, Y ] ∈ X (M) .

The Lie bracket satisfies

(a) [X, Y ] = −[Y, X] (142)
(b) [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 (143)

A (non-associative) algebra with a multiplication rule that satisfies these
two properties is called a Lie algebra. Property (b) is referred to as the
Jacobi identity.
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EXERCISE: Prove that the sets LHV and HV of locally and globally
Hamiltonian vector fields, respectively, on T ∗M are infinite-dimensional vec-
tor spaces. Thus you need to show that if X, Y ∈ LHV and α ∈ R, then
X + Y ∈ LHV and αX ∈ LHV , and similarly for HV.

Since LHV is an infinite dimensional vector space, the proposition shows
that the Lie bracket provides LHV with the algebraic structure of an infinite
dimensional Lie algebra, which is a proper subalgebra of X (T ∗M). Note that
since each Hamiltonian vector field is itself locally Hamiltonian, the set HV
of Hamiltonian vector fields is also a Lie algebra under the Lie bracket, and
HV is a subalgebra of LHV. This Lie algebraic structure of the set HV leads
naturally to the concept of the Poisson bracket of functions on T ∗M .

We can obtain some understanding of the geometrical significance of the
proper sub-algebras LHV and HV of the Lie algebra X (T ∗M) by using the
symplectic 2-form ω to relate each to subsets of the space Λ1 ≡ Λ1(T ∗M) of
differential 1-forms on T ∗M . Each vector field X ∈ X (T ∗M) corresponds
to a unique 1-form λX via

λX = −X ω .

From the definitions we see that

(a) X ∈ LHV =⇒ λX is closed
(b) X ∈ HV =⇒ λX is exact
(c) X /∈ LHV =⇒ λX is not closed

Thus locally and globally Hamiltonian vector fields on T ∗M correspond,
respectively, to closed and exact differential 1-forms.

Denote by C∞(T ∗M) the set of all smooth ( C∞) functions f : T ∗M →
R. This set forms an infinite dimensional vector space, since the sum of
two smooth functions and a scalar multiple of a smooth function are again
smooth functions on T ∗M . Moreover, we may think of C∞(T ∗M) as a
commutative algebra under the pointwise multiplication

f · g(x) = f(x)g(x) .

This view of C∞(T ∗M) as a commutative algebra will be used shortly.
Now consider two classical observable f, g ∈ C∞(T ∗M). The associated

Hamiltonian vector fields determined by f and g are, from equation (129),

Xf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

Xg =
∂g

∂pi

∂

∂qi
− ∂g

∂qi

∂

∂pi
(144)
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If X is a smooth vector field and f is a smooth function on T ∗M , then
LX(f) ≡ X(f) is another smooth function on T ∗M . In particular, applying
the Hamiltonian vector field Xf to the classical observable g we obtain

Xf (g) =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
(145)

which we recognize as the classical Poisson bracket of the observables g
and f , which we denote by {g, f}. We have the result that if Xf ∈ HV and
g ∈ C∞(T ∗M) then

Xf (g) = {g, f} (146)

REMARK: We take equation (146) as the definition of the Poisson bracket
of functions on T ∗M . As remarked above this definition agrees with the
classical definition, and with Śniatycki’s definition (page 39). Note, how-
ever, that the definition (146) has the disagreeable feature of reversing the
order of appearance of the functions f and g on the two sides of the equa-
tion. Other authors (eg. Woodhouse, Geometric Quantization, 1980, pg.
11) use the definition {f, g} := Xf (g) instead of (146), but this results in
the introduction of a minus sign in the coordinate expression for the Poisson
bracket.

The Poisson bracket {g, f} can also be expressed as 2ω(Xf , Xg) since

{g, f} = Xf (g)
= dg(Xf )
= −(Xg ω)(Xf )
= −2ω(Xg, Xf )
= 2ω(Xf , Xg) (147)

What we want to do now is to use Proposition #1 to transfer the Lie
algebraic structure of HV over to C∞(T ∗M). Thinking of C∞(T ∗M) as an
infinite dimensional vector space we define a multiplication on elements of
C∞(T ∗M) by

∀ f, g ∈ C∞(T ∗M) f · g def
= {f, g} ∈ C∞(T ∗M) . (148)

From the definition (146) one may show that this multiplication rule satisfies,
∀ f, g, h ∈ C∞(T ∗M),

(a) {f, g} = −{g, f}
(b) {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0 (149)
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The result is that the vector space C∞(T ∗M), provided with the multi-
plication rule (148), is an infinite dimensional Lie algebra. Moreover,
above we have indicated that C∞(T ∗M) also has the structure of an infinite
dimensional commutative algebra under pointwise multiplication. For
f, g, h ∈ C∞(T ∗M) we have gh ∈ C∞(T ∗M), and we can ask how the Pois-
son bracket in the Lie algebra is related to the pointwise multiplication in
the commutative algebra. (Both algebras have the same underlying vector
space C∞(T ∗M).) From the definition (146) we have

{f, gh} = −Xf (gh)
= −Xf (g)h− gXf (h)
= {f, g}h + g{f, h} (150)

This equation shows that the Poisson bracket acts as a derivation on the
commutative algebra. Guillemin and Sternberg (The moment map and col-
lective motion, Ann. Physics, 127(1980), pp. 220-253) have given the name
Poisson algebra to the algebraic structure of a commutative algebra with
a “bracket” multiplication that is anti-symmetric, satisfies a Jacobi iden-
tity, and which also acts as a derivation on the commutative algebra. The
set C∞(T ∗M) equipped with the Poisson bracket defined in (146) is thus a
Poisson algebra.

DEFINITION #2: The Poisson algebra of C∞ real-valued functions on
T ∗M with multiplication rule (146) will be denoted by

HF ≡ HF (T ∗M,R) . (151)

We now have two Lie algebras on T ∗M defined by the symplectic 2-form
ω, namely HV with the Lie bracket of vector fields as the product, and HF
with the Poisson bracket of functions as the product. How are these two Lie
algebras related? We have a natural map φ : HF → HV given by

f −→ φ(f) = Xf . (152)

Moreover, from equation (147) we have

{f, g} = −2ω(Xf , Xg) . (153)

This last equation together with proposition #1 implies

PROPOSITION #2: [Xf , Xg] = −X{f,g} .
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From this proposition we infer the following fact:

φ({f, g}) = −[Xf , Xg] , (154)

This shows that the map φ : HF → HV is an anti-homomorphism of the
Poisson algebra HF into the Lie algebra HV.

EXERCISE: Show that the center of the Poisson alegbra (C∞(T ∗M), { , }),
that is the set of all f ∈ C∞(T ∗M) such that {f, g} = 0 for all g ∈
C∞(T ∗M), consists of the constant functions on T ∗M .

EXERCISE: Show that the kernel of the map f −→ Xf is the center of
the Poisson algebra.

If we partition HF into equivalence classes, two functions f and g being
equivalent if they differ by a constant, then we may define the quotient space
HF/R, where we are identifying the constant functions (i.e. the center of
the Poisson algebra) with the real numbers R. Thus as Lie algebras we have

HF/R = HV . (155)

The sequence of maps

0 −→ R −→ HF −→ HV −→ 0 (156)

is exact in the sense that the image of each map is the kernel of the following
map. Because HV misses being isomorphic to HF only by elements of the
center of HF, the Lie algebra HF is referred to as a central extension of
HV (cf. Guillemin and Sternberg, Symplectic techniques in physics,p. 91,
1984, Cambridge).
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