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Abstract

This review paper is concerned with the generalizations to field theory of the tangent

and cotangent structures and bundles that play fundamental roles in the Lagrangian

and Hamiltonian formulations of classical mechanics. The paper reviews, compares

and constrasts the various generalizations in order to bring some unity to the field of

study. The generalizations seem to fall into two categories. In one direction some have

generalized the geometric structures of the bundles, arriving at the various axiomatic

systems such as k-symplectic and k-tangent structures. The other direction was to

fundamentally extend the bundles themselves and to then explore the natural geometry

of the extensions. This latter direction gives us the multisymplectic geometry on jet

and cojet bundles and n-symplectic geometry on frame bundles.
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1 INTRODUCTION 1

1 Introduction

This review paper is inspired by the geometric formulations of the Lagrangian and Hamil-

tonian descriptions of classical mechanics. The mathematical arenas of these well-known

formulations are respectively, the tangent and cotangent bundles of the configuration space.

Over the years many have sought to study classical field theory in analogous ways, using

various generalizations or extensions of the tangent and cotangent bundles and/or their

structures. No one has yet achieved a perfect formalism, but there are beautiful and useful

results in many arenas.

The generalizations seem to fall into two categories. In one direction, some have general-

ized the geometric structures of these bundles, sometimes arriving at a formalism pertinent

to field theory. Another direction was to fundamentally extend the bundles themselves and

then explore the natural geometry of the extensions. The former gives us the various ax-

iomatic systems such as k-symplectic and k-tangent structures. The latter gives us the

multisymplectic geometry on jet and cojet bundles and n-symplectic geometry on frame

bundles.

1.1 Cotangent-like structures

The first step in this direction of generalization was the development of symplectic geom-

etry [1]. Later, around 1960, Bruckheimer [2] introduced the notion of almost cotangent

structures. These were futher investigated by Clark and Goel [3] in 1974. In both cases the

canonical 2-form became the model from which axioms were designed.

Between 1987 and 1991, several independent and closely related generalizations were de-

veloped. Polysymplectic geometry [4], almost k-cotangent structures [5, 6], and k-symplectic

geometry [7, 8] were based around the natural structure of the k-cotangent bundle. This

bundle, which can be thought of as the fiberwise product of the cotangent bundle k times,

has a k-tuple of 1-forms with which one works. Also, the development of the n-symplectic

geometry of the frame bundle and its Rn-valued soldering 1-form θ began during this time

period [9, 10, 11, 12]. While the development of k-tangent structures and k-symplectic ge-

ometry had purely geometric motivations, polysymplectic geometry was created to study
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field theory and m-symplectic geometry sought to generalize Hamiltonian mechanics.

1.2 Tangent-like structures

Around 1960, the theory of almost tangent structures was developed by Clark and Bruck-

heimer [13] and Eliopoulos [14] separately. Almost tangent structures are generalizations of

the tangent bundle. The canonical vector valued one-form J , viewed as the object of central

interest, was axiomatized.

Almost k-tangent structures [15, 16] arose around 1988 as a generalization of the geometry

of the k-tangent bundle. This bundle is, among other interpretations, the fiberwise product

of the tangent bundle with itself k times. A section of this bundle is equivalent to a k-tuple

of vector fields. The central geometric object becomes a k-tuple of J ′s.

Another version of the tangent structure arises on the jet bundle (see [17]). This is a very

broad level of generalization since the idea of the jet of a section generalizes and incorporates

the notions of tangent vectors, cotangent vectors, k-tangent vectors, and k-cotangent vectors.

Such geometry has clear importance to field theory since one can envision any type of field

as a section of a fiber bundle.

We present here also a new tangent-like structure, namely a canonically defined set of

tensor fields J i, i = 1...n on the bundle of frames LM of a manifold M . This tangent-like

structure will be shown to induce the tangent structure on TM .

1.3 Interconnections, and plan of the paper

In this review paper our goal is to identify and clarify important connections between the

various structures mentioned above. We also will consider relationships between some of the

formalisms built on top of these structures.

The k-cotangent, k-symplectic, and polysymplectic structures are nested generalizations

with k-cotangent being the most specific. The n-symplectic geometry of the frame bundle

is also an example of a polysymplectic structure. Later in the paper, we will draw some

interesting connections between the frame bundle and the k-cotangent bundle.

The frame bundle is an interesting case since in addition to having a cotangent-like
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structure, it also has a tangent-like structure. Exploiting the natural correlation of frames

and co-frames, we can define an n-tuple of Js in addition to the m-tuple of θs mentioned

earlier. These objects acquire additional properties and relationships on the frame bundle.

The vector valued one-form Sα on the jet bundle is later shown to be directly related to

the other tangent structures in the special cases where they are comparable. Additionally,

using new results regarding the adapted frame bundle we show a similar relationship between

the k-tangent structure there and the Sα on the jet bundle.

Venturing into the realm of multi-symplectic geometry, we show how the canonical multi-

symplectic form on the cojet bundle is tied to the canonical k-symplectic structures we

discuss. Moreover we show how the Cartan-Hamilton-Poincaŕe n-form on J1π is induced

from the m-symplectic structure on LπE.

What we strive to do in this paper is to unify perspectives. We show similarities and

differences among the approaches and draw strong correlations. Since no one geometry has

emerged as dominant, it is important that everyone be aware of the options. We hope this

work may serve as a guidebook and translation table for those desiring to explore other

formalisms.

All the manifolds are supposed to be smooth. The differential of a mapping F : M −→ N

at a point x ∈ M will be denoted by F∗(x) or TF (x). The induced tangent mapping will be

denoted as TF : TM −→ TN .

The names of the various theories are different, yet two names are so similar that we

feel it necessary to introduce the following convention that will be followed throughout the

paper.

• We use the term k-symplectic geometry to refer to the works of Awane and the works

of de León, Salgado, et. al.

• We use the terms n-symplectic geometry and/or m-symplectic geometry to refer to the

works of Norris et. al.
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2 Spaces with tangent-like structures

In this section we first recall the definitions and main properties of almost tangent and

almost k-tangent structures. We describe the canonical n-tangent structure of the frame

bundle LM of an n-dimensional manifold M in terms of the soldering form.

Secondly we recall Saunders’s construction of the vector valued 1-form Sα. This 1-form

is a generalization to field theories defined on jet bundles of fibered manifolds, of the almost

tangent structure.

2.1 Almost tangent structures and TM

An almost tangent structure J on a 2n-dimensional manifold M is tensor field of type (1, 1)

of constant rank n such that J2 = 0. The manifold M is then called an almost tangent

manifold. Almost tangent structures were introduced by Clark and Bruckheimer [13] and

Eliopoulos [14] around 1960 and have been studied by numerous authors (see [18, 19, 20, 21,

22, 23, 24, 25, 26]).

The canonical model of these structures is the tangent bundle τM : TM → M of an

arbitrary manifold M . Recall that for a vector Xx at a point x ∈ M its vertical lift is the

vector on TM given by

XV
x (vx) =

d

dt
(vx + tXx)|t=0 ∈ Tvx(TM)

for all points vx ∈ TM .

The canonical tangent structure J on TM is defined by

Jvx(Zvx) = ((τM)∗(vx)Zvx)
V
vx

for all vectors Zvx ∈ Tvx(TM), and it is locally given by

J =
∂

∂vi ⊗ dxi (1)

with respect the bundle coordinates on TM . This tensor J can be regarded as the vertical

lift of the identity tensor on M to TM [27].

The integrability of these structures, which means the existence of local coordinates such

that the tensor field J is locally given like as in (1), is characterized as follows.
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Proposition 2.1 An almost tangent structure J on M is integrable if and only if the Ni-

jenhuis tensor NJ of J vanishes.

Crampin and Thompson [20] proved that an integrable almost tangent manifold M satis-

fying some natural global hypotheses is essentially the tangent bundle of some differentiable

manifold.

2.2 Almost k-tangent structures and T 1
k
M

The almost k-tangent structures were introduced as generalization of the almost tangent

structures [15, 16].

Definition 2.2 An almost k-tangent structure J on a manifold M of dimension n + kn is

a family (J1, . . . , Jk) of tensor fields of type (1, 1) such that

JA ◦ JB = JB ◦ JA = 0, rank JA = n, Im JA ∩ (⊕B #=AIm JB) = 0, (2)

for 1 ≤ A, B ≤ k. In this case the manifold M is then called an almost k-tangent manifold.

The canonical model of these structures is the k-tangent vector bundle T 1
k M = J1

0 (Rk, M)

of an arbitrary manifold M , that is the vector bundle with total space the manifold of 1-jets

of maps with source at 0 ∈ Rk and with projection map τ(j1
0σ) = σ(0). This bundle is also

known as the tangent bundle of k1-velocities of M [27].

The manifold T 1
k M can be canonically identified with the Whitney sum of k copies of

TM , that is

T 1
k M ≡ TM ⊕ · · ·⊕ TM,
j1
0σ ≡ (j1

0σ1 = v1, . . . , j1
0σk = vk)

where σA = σ(0, . . . , t, . . . , 0) with t ∈ R at position A and vA = (σA)∗(0)( d
dt

∣

∣

0
).

If (xi) are local coordinates on U ⊆ M then the induced local coordinates (xi, vi
A), 1 ≤

i ≤ n, 1 ≤ A ≤ k, on τ−1(U) ≡ T 1
k U are given by

xi(j1
0σ) = xi(σ(0)), vi

A(j1
0σ) =

d

dt
(xi ◦ σA)|t=0 = vA(xi) .
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Definition 2.3 For a vector Xx at M we define its vertical A-lift (Xx)A as the vector on

T 1
k M given by

(Xx)
A(j1

0σ) =
d

dt
((v1)x, . . . , (vA−1)x, (vA)x + tXx, (vA+1)x . . . , (vk)x)|t=0 ∈ Tj1

0σ
(T 1

k M)

for all points j1
0σ ≡ ((v1)x, . . . , (vk)x)) ∈ T 1

k M .

In local coordinates we have

(Xx)
A =

n
∑

i=1

ai ∂

∂vi
A

(3)

for a vector Xx = ai ∂/∂xi.

The canonical vertical vector fields on T 1
k M are defined by

CA
B(x, X1, X2, . . . , Xk) = (XB)A (4)

and are locally given by CA
B = vi

B
∂

∂vi
A
. The canonical k-tangent structure (J1, . . . , Jk) on

T 1
k M is defined by

JA(Zj1
0σ

) = (τ∗(Zj1
0σ

))A

for all vectors Zj1
0σ

∈ Tj1
0σ

(T 1
k M). In local coordinates we have

JA =
∂

∂vi
A

⊗ dxi (5)

The tensors JA can be regarded as the (0, . . . , 1A, . . . , 0)-lift of the identity tensor on M

to T 1
k M defined in [27].

We remark that an almost 1-tangent structure is an almost tangent structure.

In [15, 16] the almost k–tangent structures are described as G-structures, and the inte-

grability of these structures, which is defined as the existence of local coordinates such that

the tensor fields JA are locally given as in (5), is characterized by following proposition.

Proposition 2.4 An almost k-tangent structure (J1, . . . , Jk) on M is integrable if and only

if {JA, JB} = 0 for all 1 ≤ A, B ≤ k, where

{JA, JB}(X, Y ) = [JAX, JBY ] + JAJB[X, Y ] − JA[X, JBY ] − JB[JAX, Y ] ,

for any vector fields X, Y on M .

In [15, 16] it is proved (in a way analogous to [20]) that an integrable almost tangent

manifold M satisfying some natural global hypotheses is essentially the k-tangent bundle of

some differentiable manifold.
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2.3 The canonical n-tangent structure of LM

We shall show that LM has an intrinsic n-tangent structure described in terms of the sol-

dering form and fundamental vertical vectors fields.

Let M be a n-dimensional manifold and λM : LM → M the principal fiber bundle of

linear frames of M . A point u of LM will be denoted by the pair (x, ei) where x ∈ M and

(e1, e2, . . . , en)x denotes a linear frame at x. The projection map λM : LM → M is defined

by λM(x, ei) = x.

If (U, xi) is a chart on M then we can introduce two different coordinates on λ−1
M (U).

First consider the coframe or n-symplectic momentum coordinates (xi, πi
j) on λ−1

M (U) defined

by

xi(u) = xi(x) , πi
j(u) = ei(

∂

∂xj
) , (6)

where (e1, . . . , en)x is the dual frame to u = (e1, . . . , en)x.

Secondly consider the frame or n-symplectic velocity coordinates (xi, vi
j) on λ−1

M (U) defined

by

xi(u) = xi(x) , vi
j(u) = ej(x

i) , (7)

The relationship between the two coordinates systems on LM is given by

vi
j(u)πj

k(u) = δik , vi
j(u)πk

i (u) = δkj , (8)

for all u in the domain of the πi
j momentum coordinates.

Denoting the standard basis of gl(n, R) by {Ei
j}, the corresponding fundamental vertical

vector fields E∗i
j on LM are given in momentum coordinates by

E∗i
j = −πi

k

∂

∂πj
k

. (9)

The bundle of linear frames LM is an open and dense submanifold of the n-tangent bundle

T 1
nM , where n = dim M . The general linear group GL(n, R) acts naturally on both LM

and T 1
nM . However, since each point in LM is a linear frame, the action of Gl(n, R) is free
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on LM but not on T 1
nM . This reflects the fact that LM has more intrinsic structure than

T 1
nM .

On LM we have an Rn-valued one-form, the soldering one-form θ̂ = θi r̂i. Here r̂i denotes

the standard basis of Rn. In momentum coordinates, θi has the local expression

θi = πi
jdxj . (10)

θ̂ is the n-symplectic potential on LM .

Now the restriction of the n-tangent structure on T 1
nM to LM will yield an n-tangent

structure on LM . It is not difficult to show that the restriction of (5) to LM has, in

n-symplectic momentum coordinates, the form

J i = −πi
aπ

j
b

∂

∂πa
j

⊗ dxb , (11)

We will present now an alternative derivation of this n-tangent structure on LM that is

reminiscent of the geometric origins of other tangent-like structures. We recall the formula

ξ∗(u) =
d

dt
(u · exp(tξ))|t=0 (12)

for the value of the associated fundamental vertical vector field ξ∗ on LM defined at u =

(x, ei) for each ξ ∈ gl(n, R). These vector fields are smooth. We define the vector-valued

1-forms J i by

(J i)u(X) = (Ei
jθ

j
u(X))∗(u) ∀ X ∈ Tu(LM) (13)

This definition uses the group action on LM in a manner that parallels the definition of

the tangent structure on TM and mixes in the canonical soldering 1-forms in a fundamental

way. The difference is that the action of GL(n, R) on LM is global, while the definition of

J on TM uses the fiberwise action of TnM on TnM .

The mapping ξ → ξ∗ is a linear mapping from the Lie algebra gl(n, R) to the Lie algebra

of fundamental vertical vector fields on LM . Hence

(J i)u(X) = θj
u(X)(Ei

j)
∗(u) ∀ X ∈ Tu(LM)
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so that

J i = E∗i
j ⊗ θj (14)

Substituting (9) and (10) into this formula yields the local expression (11). This formula tell

us that the canonical n-tangent structure on T 1
nM is in fact another representation of the

soldering 1-form θ̂. To see this explicity we note that the mapping

r̂i → Ej
i ⊗ r̂j → E∗j

i ⊗ r̂i

is a linear representation of the basis vectors r̂i of Rn in the space of gl(n, R)⊗Rn. Extending

this representation to θ̂ = θi ⊗ r̂i we obtain the n-tangent structure Ĵ :

θ̂ = θi ⊗ r̂i → (E∗i
j ⊗ θj) ⊗ r̂i = Ĵ .

2.4 The vector-valued one-form Sα on J1π

We now turn our attention to 1-jets and review the tangent-like structure present on J1π

[17].

Let π : E → M be a fiber bundle where M is n-dimensional and E is m = (n + k)-

dimensional. Let τE-V π : V π → E be the vertical tangent bundle to π. We shall denote by

π1,0 : J1π → E the canonical projection and by V π1,0 the vertical distribution defined by

π1,0.

Throughout this paper if (xi, yA) are local fiber coordinates on E we take standard jet

coordinates (xi, yA, yA
i ), 1 ≤ i ≤ n, 1 ≤ A ≤ k, on the first jet bundle J1π the manifold of

1-jets of sections of π.

Definition 2.5 Let φ : M → E be a section of π, x ∈ M and y = φ(x). The vertical

differential of the section φ at the point y ∈ E is the map

dV
y φ : TyE −→ Vyπ

u .→ u − (φ ◦ π)∗u

As dV
y φ depends only on j1

xφ, the vertical differential can be lifted to J1π in the following

way.
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Definition 2.6 The canonical contact 1-form ω1 on J1π is the V π-valued 1-form defined

by
ω1(j1

xφ) : Tj1
xφ(J

1π) −→ Vφ(x)π

X̃j1
xφ .→ (dV

y φ)
(

(π1,0)∗(X̃j1
xφ)

)

In coordinates,

ω1 = (dyB − yB
j dxj) ⊗

∂

∂yB
(15)

Next let us recall the definition of the vector-valued 1-form Sα on J1π where α is a 1-

form on M . Given a point j1
xφ ∈ J1π, a cotangent vector ηx ∈ T ∗

xM and a tangent vector

ξ ∈ Vφ(x)π, there exists a well defined vector ηx /j1
xφ ξ ∈ Vj1

xφπ1,0 called the vertical lift of ξ

to V π1,0 by η. This vector is locally given by

ηx /j1
xφ
ξφ(x) = ηi ξ

A ∂

∂vA
i

(j1
xφ) . (16)

Definition 2.7 Let α ∈ Λ1M be any 1-form on M . The vector-valued 1-form Sα on J1π is

defined by

Sα(j1
xφ) : Tj1

xφ(J
1π) −→ (V π1,0)j1

xφ

X̃j1
xφ → Sα(j1

xφ)(X̃j1
xφ) = αx /j1

xφ ω
1(X̃j1

xφ) .

From (16) and (15) we have that in coordinates

Sα = αj (dyA − yA
i dxi) ⊗

∂

∂vA
j

. (17)

Sα can be considered a more general version of the canonical tangent and k-tangent struc-

tures. This relationship is explored in section 3.2. Note also that Sα plays an important role

in the construction of the Cartan-Hamilton-Poincaré n-form (see section 7.1).

2.5 The adapted frame bundle LπE

An adapted frame at e ∈ E, π : E → M , is a frame where the last k basis vectors are vertical

with respect to π. The adapted frame bundle of π [28, 29], denoted by LπE, consists of all

adapted frames for E,

LπE = {(ei, eA)e : e ∈ E, {ei, eA} is a basis for TeE, and π∗(e)(eA) = 0}
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The canonical projection, λ : LπE → E, is defined by λ(ei, eA)e = e.

LπE is a reduced subbundle of LE, the frame bundle of E. As such it is a principal fiber

bundle over E. Its structure group is Gv the nonsingular block lower triangular matrices

Gv =

{(

A 0
C B

)

: A ∈ Gl(n, R), B ∈ Gl(k, R), C ∈ R
kn

}

(18)

Gv acts on LπE on the right by

(ei, eA)e

(

A 0

C B

)

= (Ai
jei + CA

j eA, BA
BeA)e. (19)

If (xi, yA) are adapted coordinates on an open set U ⊆ E, then one may induce several

different coordinates on λ−1(U). First consider the coframe or m-symplectic momentum

coordinates (xi, yA, πi
j, π

A
j , πA

B) on λ−1(U) defined in (6). Let us observe that πi
A = 0 on

LπE.

We have as is customary retained the same symbols for the induced horizontal coordi-

nates.

Secondly consider the frame or m-symplectic velocity coordinates (xi, yA, vi
j, v

A
j , vA

B) on

λ−1(U) defined in (7). Let us observe that vi
A = 0 on LπE.

The v coordinates, viewed together as a block triangular matrix, form the inverse of the

π coordinates defined above. The blocks have the following relations:

vi
jπ

j
s = δis vA

j π
j
s + vA

Bπ
B
s = 0 vA

Bπ
B
C = δAC

Lastly consider the following coordinates which are constructed from the previous two.

Define (xi, yA, ui
j, u

A
j , uA

B) on λ−1(U) by

xi((ei, eA)e) = xi(e) ui
j = πi

j uA
j = vA

i π
i
j = −vA

Bπ
B
j

yA((ei, eA)e) = yA(e) uA
B = πA

B

In Section 3.3 we discuss the fact that LπE is an H = Gl(n) × Gl(k) principal bundle

ρ : LπE → J1π. It will turn out that the uA
j coordinates are pull-ups under ρ of the standard

jet coordinates on J1π. As such, we refer to these coordinates as Lagrangian coordinates.

The fundamental vertical vector fields E∗i
j , E∗A

B and E∗i
A , on LπE are given, in Lagrangian

coordinates, by

E∗i
j = −ui

s

∂

∂uj
s

E∗A
B = −uA

C

∂

∂uB
C

E∗i
A = ui

sv
B
A

∂

∂uB
s

(20)
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On LπE we have also a Rm+k-valued 1-form, the soldering one-form θ̂ = θi r̂i + θA r̂A,

which is the restriction of the canonical soldering 1-form on LE to LπE. Here r̂i, r̂A denotes

the standard basis of Rn+k. In Lagrangian coordinates, θi, θA have the local expression

θi = ui
jdxj , θA = uA

B(dyB − uB
j dxj) . (21)

From (14) we have that the (n + k)-tangent structure on LE is given by

J i = E∗i
j ⊗ θj + E∗i

B ⊗ θB, JA = E∗A
j ⊗ θj + E∗A

B ⊗ θB

Now considering its restriction to the principal fiber bundle LπE we have

(J i)|LπE ≡ J i, 1 ≤ i ≤ n,

JA|LπE ≡ E∗A
j |LπE ⊗ θj + E∗A

B ⊗ θB 1 ≤ A ≤ k .

3 Relationships among the tangent-like structures

In this section we show how the tangent, k-tangent, and similar structures on various spaces

are related. We have already remarked in Section 2.3 that the n-tangent structure on LM

and the one on T 1
nM (n = dim M) induce each other. Now we complete the circle by showing

that the tangent structure on TM induces the k-tangent structure on T 1
k M and that the

n-tangent structure on LM induces the tangent structure on TM .

Secondly, we show that in the special cases where comparison makes sense the vector

valued one-form on J1π is directly related to the k-tangent structure on T 1
k M . Furthermore,

using recent results relating the jet bundle and adapted frame bundle, we show a similar

relationship with the (n + k)-tangent structure on LπE.

3.1 Relationships among TM , T 1
k
M , and LM

The k-tangent structure on T 1
k M in terms of the tangent structure on TM

One can induce JA on T 1
k M from J on TM . We make use of the inclusion maps

iA : TM → T 1
k M 1 ≤ A ≤ k

vx → (0, . . . , 0, vx, 0, . . . , 0)
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From (1), (5) we obtain

Proposition 3.1

JA(u) = iA∗(φ(u)) ◦ Jφ(u) ◦ φ∗(u)

for all u ∈ T 1
k M , where φ : T 1

k M → TM is any C1 bundle morphism over the identity on

M(one of the k projections for example).

The tangent structure on TM viewed from LM

Lemma 3.2 Let (J1, . . . , Jn) be the canonical n-tangent structure of LM . For all vector

fields X on LM we have

J i ◦ Rg∗(X) = (g−1)i
aRg∗ ◦ Ja(X) (22)

where Rg denotes the right translation with respect to g ∈ GL(n, R).

Proof It follows from (11) and the identities

R∗
g(π

j
k) = (g−1)j

aπ
a
k , R∗

g(dπ
j
k) = (g−1)j

adπ
a
k , R∗

g(dxi) = dxi ,

Rg∗(
∂

∂πi
j

) = (g−1)a
i

∂

∂πa
j

, Rg∗(
∂

∂xi
) =

∂

∂xi
.

where g is any element of GL(n, R) .

Let T̃M denotes the manifold obtained from the tangent bundle TM by deleting the zero

section. For a fixed, non-zero element ξ ∈ Rn let ψξ denote the mapping from LM to T̃M

defined as follows. For each u ∈ LM let

ψξ(u) = [u, ξ] (23)

where we are identifying the tangent bundle TM with the bundle associated to LM and the

standard action of GL(n, R) on Rn. The following lemma is easily verified for this map.

Lemma 3.3

(ψξ)∗(E
∗b
c (u)) = ξbvi

c(u)
∂

∂yi

∣

∣

∣

∣

[u,ξ]

(24)
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Remark In this case Let h = hijdxi ⊗ dxj be any metric tensor field on the manifold M .

Then its associated covariant tensorial function on LM is the Rn∗ ⊗s Rn∗ valued function

with components

ĥij = (hab ◦ λ)v
a
i v

b
j (25)

(see [30]). For simplicity we will drop the ◦λ notation and write simply ĥij = habva
i v

b
j .

Moreover, we know that (ĥab) obeys the transformation law

ĥab(u · g) = gm
a gn

b ĥmn(u) (26)

for all g ∈ GL(n).

Definition 3.4 Let h be a fixed positive definite metric tensor field on M . The associated

covariant m-tangent structure (J (h)
i ) based on h is

J (h)
i =

m
∑

j

ĥijJ
j (27)

Lemma 3.5

J (h)
a (u · g)(Rg∗(X)) = gb

aRg∗

(

J (h)
b (u)(X)

)

(28)

Proof The proof follows easily from (22) and (26).

Theorem 3.6 Let h be an arbitrary positive definite metric tensor field on the manifold M ,

and let (J (h)
i ) denote the covariant m-tangent structure on LM defined by h. For each point

[u, ξ] ∈ T̃M (note: ξ = (ξi) is by assumption non-zero) let ψξ : LM → T̃M be the map

defined in (23) above. Then the vector-valued 1-form J on T̃M defined pointwise by

X −→ J ([u, ξ])(X) =
ψξ∗

(

ξiJ (h)
i (u)(X̃)

)

ĥab(u)ξaξb
, ∀ X ∈ T[u,ξ](TM) (29)

is the canonical tangent structure on T̃M given in local coordinates by

J =
∂

∂yi
⊗ dxi (30)

In equation (29) X̃ is any tangent vector at u ∈ LM that projects to the same vector at

λM(u) as does the vector X ∈ T[u,ξ](TM); i.e. dλM(X̃) = dτ(X).
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Proof We first show that the tangent vector J ([u, ξ]) is well-defined. Since [u, ξ] =

[u · g, g · ξ] we need to show that the right-hand side of formula (29) remains unchanged if

we make the substitutions u → u · g and ξ → g · ξ = ((g−1)i
jξ

j). Making the substitutions

we have

J ([u · g, g ξ])(X) =
ψ(g ξ)∗

(

(g ξ)iJ (h)
i (u · g)(Rg∗X̃)

)

ĥab(u · g)(g · ξ)a(g · ξ)b
(31)

Using (g ξi) = (g−1)i
mξ

m and (28) the numerator in this equation can be reduced as follows:

ψ(g ξ)∗

(

(g ξ)iJ (h)
i (u · g)(Rg∗X̃)

)

= ψ(g ξ)∗

(

(g−1)i
mξ

mgb
i Rg∗

(

J (h)
b (u)(X)

))

= ψ(g ξ)∗

(

Rg∗(ξ
iJ (h)

i (u)(X̃)
)

= (ψ(g ξ) ◦ Rg)∗
(

ξiJ (h)
i (u)(X̃)

)

= ψξ∗
(

ξiJ (h)
i (u)(X̃)

)

where the last equality follows from the fact that ψg ξ ◦ Rg = ψξ.

Similarly, using (26) the denominator in equation (31) can be reduced as follows:

ĥab(u · g)(g · ξ)a(g · ξ)b = ĥab(u)ξaξb

Substituting the last two results into (31) we obtain

ψ(g·ξ)∗

(

(g ξ)iJ (h)
i (u · g)(Rg∗X̃)

)

ĥab(u · g)(g · ξ)a(g · ξ)b
=
ψξ∗

(

ξiJ (h)
i (u)(X̃)

)

ĥab(u)ξaξb

which proves that the mapping given in (29) above is well-defined.

We now calculate the numerator on the right-hand-side of the above identity. From (24),

(27), we obtain

ψξ∗
(

ξiJ (h)
i (u)(X̃)

)

=
(

ξiĥij(u)θk(u)(X̃)
)

ψξ∗
(

E∗j
k (u)

)

=
(

ξiĥij(u)πk
l (u)dxl(X̃)

)

(

ξjva
k(u)

∂

∂yA
([u, ξ])

)

=
(

ĥij(u)ξiξj
)

(

∂

∂yA
([u, ξ])dxa(X)

)

=
(

ĥij(u)ξiξj
)

(

∂

∂yA
⊗ dxa

)

([u, ξ])(X)

Since the metric h is definite, the coefficient ĥij(u)ξiξj is non-zero for all u ∈ LM . Hence we

may divide both sides of the last equation by this term and use linearity of the mapping ψξ

to obtain the desired result.
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3.2 The relationship between the vertical endomorphism on J1π

and the canonical k-tangent structures

Now we shall describe the relationship between the vertical endomorphism on J1π and the

canonical k-tangent structure on T 1
k M when E is the trivial bundle E = Rk × M → Rk. In

this case J1π is diffeomorphic to Rk × T 1
k M via the diffeomorphism given by j1

t φ ≡ (t, j1
0φt)

where φt(s) = φ(t + s). In this case, (see (17)), the vector valued 1-form Sα is locally given

by

Sα =
∂

∂vi
B

⊗
(

αB (dxi − vi
A dtA)

)

with respect the coordinates (tA, xi, vi
A) on Rk × T 1

k M .

In the case k = 1, we consider ω = dt and thus

Sdt =
∂

∂vi
⊗ (dxi − vi dt) =

∂

∂vi
⊗ dxi − vi ∂

∂vi
⊗ dt

where (t, xi, vi) are the coordinates in Rn × TM . Then we have

Sdt = J − C ⊗ dt

where C denotes the canonical or Liouville vector field on TM and J is the canonical tangent

structure J on TM .

In the general case, with k arbitrary, if we fix B, 1 ≤ B ≤ k, we have

SdtB =
∂

∂vi
B

⊗ (dxi − vi
A dtA) =

∂

∂vi
B

⊗ dxi − vi
A

∂

∂vi
B

⊗ dtA = JB − CB
A ⊗ dtB

where JB is the canonical k-tangent structure on T 1
k M , and the CB

A are the canonical vertical

vector fields defined in equation (4).

Proposition 3.7 The relationship between the canonical k-tangent structure on T 1
k M and

the vertical endomorphism SdtB , up to some obvious identifications, is given by

JB = SdtB + CB
A ⊗ dtA
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3.3 Strong relationships between J1π and LπE

We shall consider two ways of describing 1-jets, each with its own charm:

1. Equivalence classes of local sections of π.

J1π = {j1
xφ : x ∈ M,φ ∈ Γx(π)}

where Γx(π) denotes the set of sections of π defined in a neigboorhood of x.

2. Linear right-inverses to π∗(e).

J1π = {τe : Tπ(e)M → TeE : π∗(e) ◦ τe = idTπ(e)M}

We will use either description of J1π when it is convenient.

Let H be the subgroup of Gv isomorphic to Gl(n) × Gl(k) (defined in (18)) given by

H =

{(

A 0
0 B

)

: A ∈ Gl(n, R), B ∈ Gl(k, R)

}

,

and let J be the following subgroup of Gv

J =

{(

I 0
ξ I

)

: ξ ∈ R
kn

}

.

Although H is a closed Lie subgroup of GV , it is not normal. As such Gv /H does

not have a natural group structure; it is a manifold with a left Gv-action. For each coset

gH ∈ Gv /H , we select the unique representative in J .
(

A 0
C B

)

∼

(

A 0
C B

) (

A−1 0
0 B−1

)

=

(

I 0
CA−1 I

)

By choosing these representatives, we identify Gv /H with J and hence Rkn. These identi-

fications are diffeomorphisms.

Consider how the left Gv-action looks for our selected representatives.
(

A 0
C B

) (

I 0
ξ I

)

=

(

A 0
C + Bξ B

)

∼

(

I 0
CA−1 + BξA−1 I

)

(32)

So the Gv-action appears affine when Gv /H is identified with Rkn. Therefore it is prudent

to use this identification to define an affine structure on Gv /H modeled on Rkn. This Gv-

invariant structure will pass to the fibers of the associated bundle discussed below, making

it an affine bundle.
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Theorem 3.8 LπE ×Gv (Gv /H) ∼= J1π

Proof: The affine bundle isomorphism maps each equivalence class [(ei, eA)e, (ξA
i )] to the

linear map φ : Tπ(e)M → TeE defined by φ(êi) = ei + ξA
i eA, where we use the basis {êi}

where êi = π∗(e)(ei). The inverse isomorphism is given by

j1
xφ .−→ [

(

∂

∂xi
,
∂

∂ya

)

φ(x)

,

(

∂φa

∂xi
(x)

)

]

The following corollary, whose simple proof is made possible by the preceding develop-

ment, is a fundamental tool in lifting Lagrangian field theory to the adapted frame bundle.

Corollary 3.9 LπE is a principal fiber bundle over J1π with structure group H.

Proof: This fact follows directly from proposition 5.5 in reference [30].

We will denote the projection from LπE to J1π by ρ. It is given by

ρ : LπE −→ J1π
(ei, eA)e .−→ τe : Tπ(e)M → TeE

π∗(e)(ei) .→ ei

We now show that the uA
j -coordinates defined in Section 2.5 are the pull-ups of the jet

coordinates. If (xi, yA) are adapted coordinates on an open set U ⊆ E and u = (ei, eA)e ∈

λ−1(U) then

yA
i ◦ ρ(u) = yA

i (τe) = (dyA)e

(

τe(
∂

∂xi

∣

∣

∣

∣

π(e)

)

)

= (dyA)e(ê
j(
∂

∂xi

∣

∣

∣

∣

π(e)

)ej)

= ej(
∂

∂xi

∣

∣

∣

∣

e

)(dyA)e(ej) = πj
i (u)vA

j (u) = uA
j (u)

3.4 The vector-valued 1-form Sα on J1π viewed from LπE.

LπE is a principal bundle over J1π, we shall establish in this subsection the relationship

between the vertical endomorphism Sα on J1π and the restriction of the (n + k)-tangent

structure of LE to the vertical adapted bundle LπE. To be more precise, we show that Sα

corresponds to the tensors on LπE:

E∗i
B ⊗ θB = J i − E∗i

j ⊗ θj , 1 ≤ i ≤ n .

Note the similarity to proposition 3.7.
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Proposition 3.10 Let u = (ei, eA)e be a frame on LπE and let us denote by u · ξ the frame

u · ξ = (ei, eA)e

(

I 0

ξ I

)

= (ei + ξB
i eB, eA)e

Let α be any 1-form on M and [u, ξ] = [(ei, eA)e, (ξA
i )] an element of J1π. Then the rela-

tionship between Sα and the tensor fields E∗i
B ⊗ θB is given by

Sα([u, ξ])(X[u,ξ]) = ρ∗(u · ξ)
(

(π∗α)e(ei) (E∗i
B ⊗ θB)(u · ξ)(X̃u·ξ)

)

(33)

where

X[u,ξ] ∈ T[u,ξ](J
1π) , X̃u·ξ ∈ Tu ξ(LπE)

are vectors that project onto the same vector on E.

Proof : First let us observe that, from the definition of ρ, we have

ρ(u · ξ) = ρ((ei + ξB
i eB, eA)e) = [(ei, eA)e, (ξ

A
i )] = [u, ξ] .

Now we shall prove that the right side of (33) does not depend on the choice of the

representative of the equivalence class [(ei, eA)e, (ξA
i )]. If

[u, ξ] = [(ei, eA)e, (ξ
A
i )] = [(ēi, ēA)e, (ξ̄

A
i )] = [ū, ξ̄]

we must prove that

ρ∗(u · ξ)
(

(π∗α)e(ei) (E∗i
B ⊗ θB)(u ξ)(Xu·ξ)

)

= ρ∗((ū · ξ̄)
(

(π∗α)e(ēj) (E∗j
C ⊗ θC)((ū · ξ̄)(X̄ū·ξ̄)

)

for any vectors Xu·ξ ∈ Tu·ξ(LπE), X̄ū·ξ̄ ∈ Tū·ξ̄(LπE) that project at the same vector on E.

But, in this case, we have from (19) and (32)

ū = (ēj , ēB)e = (Ai
j ei + CA

j eA , BA
B eA), ξ̄B

j = −(B−1)B
C CC

j + (B−1)B
C ξ

C
i Ai

j . (34)

Let us consider the frames

ũ = (ẽi, ẽA)e = u · ξ = (ei + ξB
i eB, eA)e

û = (êj , êB)e = ū · ξ̄ = (ēj + ξ̄C
j ēC , ēB)e = (Ai

j ẽi, B
A
B ẽA)e
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where the last identity comes from (34). Then we deduce that the relationship between the

coordinates of ũ and û are

v̂l
j = Ai

j ṽl
i , v̂C

j = Ai
j ṽC

i , v̂C
B = BA

B ṽC
A , ûi

j = (A−1)i
l ũ

l
j , ûA

l = ũA
l . (35)

On the other hand, the tensor fields E∗i
B ⊗ θB are locally given by

E∗i
B ⊗ θB = ui

j (dyB − uB
t dxt) ⊗

∂

∂uB
j

. (36)

From (36), and (35) we obtain

(E∗j
C ⊗ θC)(û) = (A−1)j

r ũr
l ((dyA)û − ũA

t (dxt)û) ⊗
∂

∂uA
l

(û) (37)

Since (π∗α)e(ēj) = Ai
j (π∗α)e(ei) we deduce that

(π∗α)e(ēj) (E∗j
C ⊗ θC)(û) = (π∗α)e(ei) ũi

l ((dyA)û − ũA
t (dxt)û) ⊗

∂
∂ua

l
(û) (38)

and

(π∗α)e(ei)(E
∗i
B ⊗ θB)(ũ) = (π∗α)e(ei) ũi

j ((dyA)ũ − ũA
l (dxl)ũ) ⊗

∂

∂uA
j

(ũ) (39)

If the vectors Xu·ξ ∈ Tu·ξ(LπE), X̄ū·ξ̄ ∈ Tū·ξ̄(LπE) project onto the same vector on E

then its components with respect the coordinates xi and yA are equal and from (38) and

(39) we obtain that

ρ∗(ũ)
(

(π∗α)e(ei)(E
∗i
B ⊗ θB)(ũ)(Xũ)

)

= ρ∗(û)
(

(π∗α)e(ēj)(E
∗j
C ⊗ θC)(û)(X̄û)

)

because ρ(ũ) = [u, ξ] = [ū, ξ̄] = ρ(û).

Now we shall prove the identity (33) using the Theorem 3.8 . If j1
xφ ≡ [(ei, eA)e, (ξA

i )]

and

ei = vj
A

∂

∂xj
(e) + vB

i

∂

∂yB
(e) , eA = vB

A

∂

∂yB
(e) (40)

then

[(ei, eA)e, (ξ
A
i )] = [(

∂

∂xj
,
∂

∂yB
)e,

(

vj
A 0

vB
i vB

A

)

|e(ξ
A
i )]
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From this identity and (32) we deduce that the coordinates of the 1-jet j1
xφ, defined by the

class [u, ξ] = [(ei, eA)e, (ξA
i )], are

∂φB

∂xs
(π(e)) = ur

s (vB
r + vB

A ξ
A
r )|e (41)

and therefore from (17) we have

Sα([u, ξ]) = αj(π(e)) ((dyA)[u,ξ] − ur
i (vA

r + vA
B ξ

B
r )|e (dxi)[u,ξ]) ⊗

∂

∂vA
j

([u, ξ]) (42)

The coodinates of the frame ũ satisfy the identities

ũi
j = ui

j , ũA
t = ũl

t ṽ
A
l = ul

t (v
A
l + vA

B ξ
B
l ) .

Therefore, from (36) we have

(E∗i
B ⊗ θB)(ũ) = ui

j|e ((dyA)ũ − ul
t|e (va

l + vA
B ξ

B
l )|e (dxt)ũ) ⊗

∂

∂ua
j

(ũ) (43)

If α = αr dxr, then (π∗α)e(ei) = αr(π(e)) vr
i and from (43) we obtain that

(π∗α)e(ei) (E∗i
B ⊗ θB)(ũ) = αj ((dyA)ũ − ul

t|e (va
l + vA

B ξ
B
l )|e (dxt)ũ) ⊗

∂

∂uA
j

(ũ))

Now, since ρ(ũ) = [u, ξ] , from this last identity and (42) we get the identity (33) taking into

account that ρ∗yA
j = uA

j .

4 Spaces with cotangent-like structures

In this section we shall define and give the main properties of the almost cotangent structure

and its generalizations.

4.1 Almost cotangent structures and T ∗M

Almost cotangent structures were introduced by Bruckheimer [2]. An almost cotangent

structure on a 2m-dimensional manifold M consists of a pair (ω, V ) where ω is a symplectic

form and V is a distribution such that

(i) ω-V ×V = 0, (ii) kerω = {0}
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The canonical model of this structure is the cotangent bundle τ ∗M : T ∗M → M of an

arbitrary manifold M , where ω is the canonical symplectic form ω0 = −dθ0 on T ∗M and V

is the vertical distribution. Let us recall the definition of the Liouville form θ0 in T ∗M :

θ0(α)(X̃α) = α((τ ∗M)∗(α)(X̃α)),

for all vectors X̃α ∈ Tα(T ∗M) . In local coordinates (xi, pi) on T ∗M

ω0 = dxi ∧ dpi, V = 〈
∂

∂p1
, . . . ,

∂

∂pk

〉. (44)

Clark and Goel [3] also investigated these structures, defining them as a certain type of

G-structure. They proved that the integrability of these structures, that is the existence of

coordinates on the manifold such that ω0 and V have the form of (44), is characterized by

Proposition 4.1 An almost cotangent structure (ω, V ) on M is integrable if and only if ω

is closed and the distribution V is involutive.

Thompson [26, 31] proved that an integrable almost cotangent manifold M satisfiying

some natural global hypotheses is essentially the cotangent bundle of some differentiable

manifold.

4.2 k-symplectic structures and (T 1
k
)∗M

Definition 4.2 [7, 8] A k-symplectic structure on a manifold M of dimension N = n + kn

is a family (ωA, V ; 1 ≤ A ≤ k), where each ωA is a closed 2-form and V is an nk-dimensional

distribution on M such that

(i) ωA!V ×V
= 0, (ii) ∩k

A=1 kerωA = {0}.

In this case (M,ωA, V ) is called a k-symplectic manifold.

The canonical model of this structure is the k-cotangent bundle (T 1
k )∗M = J1(M, Rk)0

of an arbitrary manifold M , that is the vector bundle with total space the manifold of 1-jets

of maps with target at 0 ∈ Rk, and projection τ ∗(j1
x,oσ) = x.
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The manifold (T 1
k )∗M can be canonically identified with the Whitney sum of k copies of

T ∗M , say

(T 1
k )∗M ≡ T ∗M ⊕ · · ·⊕ T ∗M,
jx,0σ ≡ (j1

x,0σ
1, . . . , jk

x,0σ
k)

where σA = πA ◦ σ : M −→ R is the A-th component of σ.

The canonical k-symplectic structure (ωA, V ; 1 ≤ A ≤ k), on (T 1
k )∗M is defined by

ωA = (τ ∗A)∗(ω0)

V (j1
x,0σ) = ker(τ ∗)∗(j

1
x,0σ)

where τ ∗A = (T 1
k )∗M → T ∗M is the projection on the Ath-copy T ∗M of (T 1

k )∗M , and ω0 is

the canonical symplectic structure of T ∗M .

One can also define the 2-forms ωA by ωA = −dθA where θA is the 1-form defined as

follows

θA(j1
x,0σ)(X̃j1

x,0σ
) = σ∗(x)((τ ∗A)∗(j

1
x,0σ)X̃j1

x,0σ
)

for all vectors X̃j1
x,0σ

∈ Tj1
x,0σ

(T 1
k )∗M .

If (xi) are local coordinates on U ⊆ M then the induced local coordinates (xi, pA
i ), 1 ≤

i ≤ n, 1 ≤ A ≤ k on (T 1
k )∗U = (τ ∗)−1(U) are given by

xi(j1
x,0σ) = xi(x), pA

i (j1
x,0σ) = dxσ

A(
∂

∂xi

∣

∣

∣

∣

x

) .

Then the canonical k-symplectic structure is locally given by

ωA =
n

∑

i=1

dxi ∧ dpA
i , V = 〈

∂

∂p1
i

, . . . ,
∂

∂pk
i

〉 1 ≤ A ≤ k .

Theorem 4.3 [7] Let (ωA, V ; 1 ≤ A ≤ k) be a k-symplectic structure on M . About every

point of M we can find a local coordinate system (xi, pA
i ), 1 ≤ i ≤ n, 1 ≤ A ≤ k such that

ωA =
n

∑

i=1

dxi ∧ dpA
i , 1 ≤ A ≤ k (45)

In [4] Günther introduces the following definitions.
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Definition 4.4 A closed non-degenerate Rn-valued 2-form

ω̄ =
n

∑

A=1

ωA r̂A

on a manifold M of dimension N is called a polysymplectic form. The pair (M, ω̄) is a

polysymplectic manifold.

A polysymplectic form ω̄ on a manifold M is called standard iff for every point of M

there exists a local coordinate system such that ωA is written locally as in (45).

¿From Theorem 4.3 it now follows that the k-symplectic manifold structures coincide

with the standard polysymplectic structures.

ω̄ is called by Norris [32] a general n-symplectic structure. The difference in the formalism

is that there exist natural definitions of Poisson brackets in the n-symplectic theory of Norris.

See Section 9 for a discussion of n-symplectic Poisson brackets in the general case.

4.3 Almost k-cotangent structures and (T 1
k
)∗M

In [5] the almost k-cotangent structures were defined and described as G-structures.

Definition 4.5 An almost k-cotangent structure is a family (ωA, VA; 1 ≤ A ≤ k), where

each ωA is a 2-form of constant rank 2n and VA is a n-dimensional distribution on M , such

that

(i) VA ∩ (⊕B #=AVB) = 0, (ii) kerωA = ⊕B #=AVB, (iii) ωA-VA×VA
= 0

for all 1 ≤ A ≤ k.

The canonical model of this structure is (T 1
k )∗M with the 2-forms ωA, and VA = ker TρA

where ρA : (T 1
k )∗M → (T 1

k−1)
∗M is the projection given by

ρA(α1, . . . ,αk) = (α1, . . . ,αA−1,αA+1, . . . ,αk).

The integrability of these structures is characterized by

Proposition 4.6 An almost k-cotangent structure (ωA, VA; 1 ≤ A ≤ k) on M is integrable

if and only if the 2-forms ωA are closed and all distributions VA1 ⊕ · · ·⊕ VAk
are involutive.

Remark It can be proved that an integrable almost k-cotangent structure on a manifold

M is a k-symplectic structure on M setting V = ⊕k
A=1VA.
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4.4 The n-symplectic structure of LM

The frame bundle LM has a canonical n-symplectic structure given by ωi = −dθi, V =

kerλM where θi are the components of the soldering one-form and V is the vertical distri-

bution. This structure was first introduced in [9, 10] under the name generalized symplectic

geometry on LM , and later referred to as n-symplectic geometry in [11]. n-symplectic ge-

ometry is the generalized geometry that one obtains on LM when dθ̂ = dθir̂i is taken as

a generalized symplectic 2-form. The structure is rich enough to allow the definition of

generalized Poisson brackets and generalized Hamiltonian vector fields. The ideas are ”gen-

eralized” in the sense that the observables of the theory are vector-valued on LM rather

than R-valued. Moreover the generalized Hamiltonian vector fields are equivalence classes

of vector-valued vector fields. The details of this geometry in the more general case of a

general n-symplectic manifold are given in Section 9 of this paper.

The relationship between n-symplectic geometry on the bundle of linear frames LM

and canonical symplectic geometry on the cotangent bundle T ∗M has been developed in

[11], showing that the ordinary symplectic geometry of T ∗M can be induced from the n-

symplectic geometry of LM using the associated bundle construction. This relationship will

be discussed further in Section 5.1.

In [28] it is shown that m-symplectic geometry on frame bundles can be viewed as a ”cov-

ering theory” for the Hamiltonian formulation of field theory (multisymplectic manifolds).

This relationship will be discussed in Section 7.4.

Also in [12] it is shown that the Schouten-Nijenhuis brackets of both symmetric and

antisymmetric contravariant tensor fields have a natural geometrical interpretation in terms

of n-symplectic geometry on the bundle of linear frames LM . Specifically, the restriction of

the n-symplectic Poisson bracket to the subspace of GL(n)-tensorial functions is in fact the

lift to LM of the Schouten-Nijenhuis brackets. See Section 9.4.

4.5 k-cosymplectic structures and Rk × (T 1
k
)∗M

Let us begin by recalling that a cosymplectic manifold is a triple (M, θ,ω) consisting of a

smooth (2n + 1)-dimensional manifold M with a closed 1-form θ and a closed 2-form ω,
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such that θ ∧ ωn 5= 0. The standard example of a cosymplectic manifold is provided by

(J1(R, N) ≡ R × T ∗N, dt, π∗ω0), with t : R × T ∗N → R and π : R × T ∗N → T ∗N the

canonical projections and ω0 the canonical symplectic form on T ∗N .

Definition 4.7 Let M be a differentiable manifold of dimension (k + 1)n + k. A family

(ηA,ωA, V ; 1 ≤ A ≤ k), where each ηA is a closed 1-form, each ωA is a closed 2-form and V

is an nk-dimensional integrable distribution on M , such that

1. η1 ∧ · · · ∧ ηk 5= 0, ηA!V
= 0, ωA!V ×V

= 0,

2. (∩k
A=1 ker ηA) ∩ (∩k

A=1 kerωA) = {0}, dim(∩k
A=1 kerωA) = k,

is called a k–cosymplectic structure and the manifold M a k–cosymplectic manifold.

The canonical model for these geometrical structures is Rk × (T 1
k )∗M = J1(M, Rk). Let

J1(M, Rk) be the (k+(k+1)n)-dimensional manifold of one jets from M to Rk, with elements

denoted by j1
x,tσ. We recall that one jets of mappings from M to Rk can be identified with

the manifold J1π of one jets of sections of the trivial bundle π : Rk × M → M .

J1π is diffeomorphic to Rk × (T 1
k )∗M via the diffeomorphism given by

j1
xσ ∈ J1π → (σ(x), j1

x,0σx) ∈ R
k × (T 1

k )∗M ,

where σx(x̃) = σ(x̃) − σ(x) and x̃ denotes an arbitrary point in M .

Let τ ∗ : Rk × (T 1
k )∗M → M denote the canonical projection. If (xi) are local coordinates

on U ⊆ M then the induced local coordinates (tA, xi, pA
i ), 1 ≤ i ≤ n, 1 ≤ A ≤ k, on

(τ ∗)−1(U) ≡ Rk × (T 1
k )∗U are given by

tA(j1
xσ) = tA, xi(j1

xσ) = xi(x), pA
i (j1

xσ) = d(σA
x )(x)(

∂

∂xi
|x
)

where σA
x = πA ◦ σx.

An Rk-valued 1-form η0 and an Rk-valued 2-form ω0 on Rk × (T 1
k )∗M are defined by

η0 =
m

∑

A=1

(η0)A r̂A =
k

∑

A=1

((π1
A)∗dt) r̂A, ω0 =

k
∑

A=1

(ω0)A r̂A =
m

∑

A=1

(π2
A)∗(ωM) r̂A (46)

where π1
A : Rk × (T 1

k )∗M → R and π2
A : Rk × (T 1

k )∗M → T ∗M are the projections defined by

π1
A((tB), (pB)) = tA , π2

A((tB), (pB)) = pA ,
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and ωM is the canonical symplectic form on T ∗M . In local coordinates we have

(η0)A = dtA, (ω0)A =
m

∑

i=1

dxi ∧ dpA
i 1 ≤ A ≤ k (47)

Moreover, let V = ker Tµ∗, where µ∗ : Rk × (T 1
k )∗M → Rk × M . Then locally

V = 〈
∂

∂p1
i

, . . . ,
∂

∂pk
i

〉 1 ≤ A ≤ k .

and the canonical k-cosymplectic structure on Rk × (T 1
k )∗M is ((η0)A, (ω0)A, V ). Indeed a

simple computation in local coordinates shows that the forms ((η0)A, (ω0)A, V ) satisfy the

conditions of Definition 4.7 .

For any k-cosymplectic structure (ηA,ωA, V ) on M , there exists a family of k vector fields

(ξ1, . . . , ξk) characterizated by the conditions

ηA(ξB) = δAB, ιξB
ωA = 0,

for all 1 ≤ A, B ≤ k. These vector fields are called the Reeb vector fields associated to the

k-cosymplectic structure.

Theorem 4.8 [41] Let (ηA,ωA, V, 1 ≤ A ≤ k) be a k-cosymplectic structure on M . About

every point of M we can find a local coordinate system (tA, xi, pA
i ) such that

(η0)A = dtA, (ω0)A =
n

∑

i=1

dxi ∧ dpA
i , V = 〈

∂

∂p1
i

, . . . ,
∂

∂pk
i

〉 1 ≤ A ≤ k ,

and the Reeb vector fields are given by ξA = ∂
∂tA

.

4.6 Multisymplectic structures

In k-symplectic geometry the model is the Whitney sum of k-copies of the cotangent bundle

of a manifold M . In multisymplectic geometry [34, 35, 36, 37] one uses a completely different

model.

Let E be an m-dimensional differentiable manifold and denote by
∧k E the bundle of

exterior k-forms on E with canonical projection ρk :
∧k E → E. Notice that

∧1 E = T ∗E.

On
∧k E there exists a canonical k-form ΘE defined by

(ΘE)α(v1, . . . , vk) = α(Tρk(v1), . . . , Tρk(vk))
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for α ∈
∧k E and v1, . . . , vk ∈ Tα(

∧k E) . This is a direct extension of the construction of

the canonical Liouville 1-form on a cotangent bundle.

Next, we define a (k + 1)-form ΩE by

ΩE = − dΘE .

Taking bundle coordinates (xi, pi1...ik), 1 ≤ i ≤ m, 1 ≤ i1 < · · · < ik ≤ m, on
∧k E, we have

ΘE = pi1...ikdxi1 ∧ · · · ∧ dxik , ΩE = −dpi1...ik ∧ dxi1 ∧ · · · ∧ dxik .

Assume that E itself is fibered over some manifold M , with projection π : E → M . For

any r, with 0 ≤ r ≤ k, let
∧k

r E denote the bundle over E consisting of those exterior k-forms

on E which vanish whenever r of its arguments are vertical tangent vectors with respect to

π. Obviously,
∧k

r E is a vector subbundle of
∧k E, and we will denote by ik,r :

∧k
r E →

∧k E

the natural inclusion.

The restriction of ΘE and ΩE to
∧k

r E will be denoted by Θr
E and Ωr

E , respectively; that

is

Θr
E = i∗k,rΘE , Ωr

E = i∗k,rΩE ,

and, clearly, Ωr
E = −dΘr

E .

Based on the properties of the (k + 1)-forms ΩE and Ωr
E , we introduce the following

definition.

Definition 4.9 A closed (k + 1)-form α on a manifold N is called multisymplectic if it is

non-degenerate in the sense that for a tangent vector X on N , X α = 0 if and only ifX =

0 . The pair (N,α) will then called a multisymplectic manifold.

Of course the manifolds (
∧k E, ΩE) and (

∧k
r E, Ωr

E), 0 ≤ r ≤ k, are multisymplectic.

To develop the multisymplectic formalism of field theory we will use the canonical multi-

symplectic manifold (
∧n

2 E, Ω2
E) and the manifold (

∧n
1 E, Ω1

E). If M is oriented with volume

form ω we can consider coordinates (xi, yA) on E such that ω = dnx = dx1 ∧ · · · ∧ dxn.

Elements of
∧n

1 E and
∧n

2 E can be written, respectively, as follows

p dnx, p dnx + pi
AdyA ∧ dn−1xi
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where dn−1xi = ∂
∂xi dnx. Then we take local coordinates (xi, yA, p) on

∧n
1 E and

(xi, yA, p, pi
A) on

∧n
2 E. Therefore the canonical multisymplectic (n + 1)-form Ω2

E on
∧n

2 E

is locally given by

Ω2
E = −dp ∧ dnx − dpi

A ∧ dyA ∧ dn−1xi (48)

and Θ2
E = p dnx + pi

AdyA ∧ dn−1xi.

Remark In [38] the authors have developed a geometrical study of multisymplectic

manifolds, exhibiting the complexity of a classification. A characterization of multisymplectic

manifolds which are exterior bundles can be found in [39].

5 Relationships among the cotangent-like structures

Here we show how the symplectic, k-symplectic, m-symplectic and similar structures are

related. We also venture further into the realm of multisymplectic geometry by showing how

the canonical k-symplectic structure is induced from a special case of the multisymplectic

structure on J1π∗. We use here the definition of J1π∗ given in [40] rather than the affine

dual definition of J1π∗ given in [34].

5.1 Relationships among T ∗M , (T 1
k
)∗M , and LM

In Section 4.2 we have already seen the relationship between the k-symplectic structure

on (T 1
k )∗M and the symplectic structure on T ∗M . The relationship between the canonical

symplectic structure on T ∗M and the soldering form on LM can be found in [11]: if θ0 is

the Liouville 1-form on T ∗M and θ the soldering 1-form on LM then

(θ0)[u,α](X̄[u,α]) = α(θu(Xu)), [u, s] ∈ T ∗M ≡ LM ×Gl(n,R) (Rn)∗ .

In this equation u is a point in LM , [u,α] denotes a point (equivalence class) in T ∗M thought

of as the associated bundle LM ×GL(m,R) (Rn)∗ and

X̄[u,α] ∈ T[u,α]T
∗M , Xu ∈ Tu(LM)

are vectors that project to the same vector on M , and α ∈ Rn∗ is non-zero.
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5.2 The multisymplectic form and the canonical k-symplectic struc-

ture

Now we shall describe the relationship between the canonical multisymplectic form Ω2
E on

∧k
2 E and the canonical k-symplectic structure on (T 1

k )∗M when E is the trivial bundle

E = Rk × M → Rk. In this case
∧k

2 E is diffeomorphic to Rk × R × (T 1
k )∗M . Let us recall

that
∧k

2 E is the vector bundle

Λk
2(R

k × M) = {α(t,x) ∈ Λk(Rk × M) : v w α(t,x) = 0 ∀v, w ∈ (V π)(t,x)}

where V π is the vertical fiber bundle corresponding to π.

We define
Ψ : Λk

2(R
k × M) −→ Rk × R × (T 1

k )∗M
α(t,x) → (t, r, (α1)x, . . . , (αk)x)

where

r = α(t,x)(
∂

∂t1
(t, x), . . . ,

∂

∂tk
(t, x))

and

(αB)x(−) = i∗t (α(t,x)(
∂

∂t1
(t, x), . . . ,

∂

∂tB−1
(t, x),−,

∂

∂tB+1
(t, x), . . . ,

∂

∂tk
(t, x))) 1 ≤ B ≤ k,

where it : M → Rk × M denotes the inclusion x → (t, x).

The inverse of Ψ

Ψ−1 : Rk × R × (T 1
k )∗M −→ Λk

2(R
k × M)

(t, r, (α1)x, . . . , (αk)x) .→ α(t,x)

is given by

α(t,x) = r(dkt)(t,x) + (pr∗2)(t,x)((α
B)x) ∧ (dk−1tB)(t,x)

where

dkt = dt1 ∧ · · · ∧ dtk, dk−1tB =
∂

∂tB
dtk

and pr2 : Rk × M → M is the canonical projection.

Elements of
∧k

2 E can be written uniquely as

pB
i dxi ∧ dk−1tB + p dkt
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where (xi) are coordinates on M . Let us denote by (tB, p, xi, pA
i ) the corresponding coordi-

nates on
∧k

2 E ≡ Rk × R × (T 1
k )∗M . Locally Ψ is written as the identity.

The canonical k-form on
∧k

2 E ≡ Rk × R × (T 1
k )∗M is locally given in this case by

Θ2
E = pB

i dxi ∧ dk−1tB + p dkt (49)

and the corresponding canonical multisymplectic (k + 1)-form Ω2
E = −dΘ2

E is locally given

by

Ω2
E = dxi ∧ dpB

i ∧ dk−1tB − dp ∧ dkt

Let i : (T 1
k )∗M → Rk × R × (T 1

k )∗M be the natural inclusion. We define on (T 1
k )∗M the

1-forms λB, 1 ≤ B ≤ k, by

λB(−) = i∗(Θ2
E(
∂

∂t1
, . . . ,

∂

∂tB−1
, − ,

∂

∂tB+1
, . . . ,

∂

∂tk
),

and from (49) we deduce λB = pB
i dxi. Hence λB is the Liouville form on the B-th copy

T ∗M of (T 1
k )∗M . To get this local expression apply λB to the partials ∂/∂xi and ∂/∂pB

i .

Therefore the 2 forms

ωB = −dλB = dxi ∧ dpB
i , 1 ≤ B ≤ k

define the canonical k-symplectic structure on (T 1
k )∗M , and ωB can also be defined as follows

ωB(−,−)) = i∗(Ω2
E(−,

∂

∂t1
, . . . ,

∂

∂tB−1
, − ,

∂

∂tB+1
, . . . ,

∂

∂tk
), (50)

The case k = 1 gives us the canonical symplectic structure of T ∗M .

Proposition 5.1 The relationship between the 2-forms of the canonical k-symplectic struc-

ture on (T 1
k )∗M and the canonical multisymplectic form Ω2

E is given by (50).

6 Field Theory on k-symplectic and k-cosymplectic

manifolds

Here we discuss the polysymplectic formalism [4] for Hamiltonian and Lagrangian field theory

using k-symplectic manifolds. We discuss the Günther’s formalism (autonomous case) using

the k-symplectic structures and the k-tangent structures. The non autonomous case will be

developed using the k-cosymplectic structures and the stable k-tangent structures [33, 41].
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6.1 k-vector fields

Let M be an arbitrary manifold and τ : T 1
k M −→ M its k-tangent bundle .

Definition 6.1 A section X : M −→ T 1
k M of the projection τ will be called a k-vector field

on M .

Since T 1
k M can be canonically identified with the Whitney sum T 1

k M ≡ TM⊕· · ·⊕TM of

k copies of TM , we deduce that a k-vector field X defines a family of vector fields X1, . . . , Xk

on M .

Definition 6.2 An integral section of the k-vector field X on M is a map φ : U ⊂ Rk → M ,

where U is an open subset of Rk such that

φ∗(t)(
∂

∂tA
) = XA(φ(t)) ∀t ∈ U, 1 ≤ A ≤ k,

or equivalently, φ satisfies

X ◦ φ = φ(1), (51)

where φ(1) is the first prolongation of φ defined by

φ(1) : U ⊂ Rk −→ T 1
k M

t −→ φ(1)(t) = j1
0φt

where φt(s) = φ(s+t) for all t, s ∈ R. If X has an integral section, X is said to be integrable.

Remark Let us consider the trivial bundle π : E = Rk×M → Rk. A jet field γ on π (see

[17]) is a section of the projection π1,0 : J1π ≡ Rk×T 1
k M −→ E ≡ Rk×M . If we identify each

k-vector field X on M with the jet field γ = (idRk , X) , that is γ(t, x) = (t, X1(x), . . . , Xk(x)),

then the integral sections of the jet field γ correspond, as defined by Günther, to the solutions

of the k-vector field X.

We remark that if φ is an integral section of a k-vector field (X1, . . . , Xk) then each

curve on M defined by φA = φ ◦ hA, where hA : Rn → Rk is the natural inclusion hA(t) =

(0, . . . , t, . . . , 0), is an integral curve of the vector field XA on M , with 1 ≤ A ≤ k. We refer

to [42, 43] for a discussion on the existence of integral sections.
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6.2 Hamiltonian formalism and k-symplectic structures

In this section, following the ideas of Günther [4], we will describe the Hamilton equations, for

an autonomous Hamiltonian, in terms of the geometry of k-symplectic structures, showing

that the role played by symplectic manifolds in classical mechanics is here played by the

k-symplectic manifolds.

Let (M,ωA, V ; 1 ≤ A ≤ k) be a k–symplectic manifold. Since M is a polysymplectic

manifold let us consider the vector bundle morphism defined by Günther:

Ω( : T 1
k M −→ T ∗M

(X1, . . . , Xk) −→ Ω((X1, . . . , Xk) =
k

∑

A=1

XA ωA .
(52)

Definition 6.3 Let H : M −→ R be a function on M . Any k-vector field (X1, . . . , Xk) on

M such that

Ω((X1, . . . , Xk) = dH

will be called an evolution k-vector field on M associated with the Hamiltonian function H.

It should be noticed that in general the solution to the above equation is not unique. Nev-

ertheless, it can be proved [41] that there always exists an evolution k-vector field associated

with a Hamiltonian function H .

Let (xi, pA
i ) be a local coordinate system on M . Then we have

Proposition 6.4 If (X1, . . . , Xk) is an integrable evolution k-vector field associated to H

then its integral sections

σ : Rk −→ M

(tB) −→ (σi(tB), σA
i (tB)),

are solutions of the classical local Hamilton equations associated with a regular multiple in-

tegral variational problem [44]:

∂H

∂xi = −
k

∑

A=1

∂σA
i

∂tA
,

∂H

∂pA
i

=
∂σi

∂tA
, 1 ≤ i ≤ n, 1 ≤ A ≤ k .
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6.3 Hamiltonian formalism and k-cosymplectic structures

In this section we will describe the Hamilton equations for a non-autonomous Hamiltonian

in terms of the geometry of k-cosymplectic structures, showing that the role played by

cosymplectic manifolds in classical mechanics (see [45, 46, 47]) is here played by the k-

cosymplectic manifolds.

Let (M, ηA,ωA, V ; 1 ≤ A ≤ k) be a k–cosymplectic manifold. Let us consider the vector

bundle morphism defined by :

Ω( : T 1
k M −→ T ∗M

(X1, . . . , Xk) −→ Ω((X1, . . . , Xk) =
k

∑

A=1

XA ωA + ηA(XA)ηA .
(53)

Let ξA the Reeb vector fields associated to the k-cosymplectic structure (ηA,ωA, V ). Notice

here that the hamiltonian H(tA, xi, pA
i ) is non-autonomous.

Definition 6.5 Let H : M −→ R be a function on M . Any k-vector field (X1, . . . , Xk) on

M such that

ηA(XB) = δAB, Ω((X1, . . . , Xk) = dH +
k

∑

iA=1

(1 − ξA(H))ηA

will be called an evolution k-vector field on M associated with the Hamiltonian function H

for all 1 ≤ A, B ≤ k.

It should be noticed that in general the solution to the above equation is not unique.

Nevertheless, it can be proved [41] that there always exists an evolution k-vector field

associated with a Hamiltonian function H .

Let (tA, xi, pA
i ) be a local coordinate system on M . Then we have

Proposition 6.6 If (X1, . . . , Xk) is an integrable evolution k-vector field associated to H

then its integral sections

σ : Rk −→ M

(tB) −→ (σA(tB), σi(tB), σA
i (tB)),

satisfy σA(t1, . . . , tk) = tA and are solutions of the classical local Hamilton equations associ-

ated with a regular multiple integral variational problem [44]:

∂H

∂xi = −
k

∑

A=1

∂σA
i

∂tA
,

∂H

∂pA
i

=
∂σi

∂tA
, 1 ≤ i ≤ n, 1 ≤ A ≤ k .
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6.4 Second Order Partial Differential Equations on T 1
k
M

The idea of this subsection is to characterize the integrable k-vector fields on T 1
k M such that

their integral sections are canonical prolongations of maps from Rk to M .

Definition 6.7 A k-vector field on T 1
k M , that is, a section ξ ≡ (ξ1, . . . , ξk) : T 1

k M →

T 1
k (T 1

k M) of the projection τT 1
k M : T 1

k (T 1
k M) → T 1

k M , is a Second Order Partial Differential

Equation (SOPDE) if and only if it is also a section of the vector bundle T 1
k τM : T 1

k (T 1
k M) →

T 1
k M , where T 1

k (τM) is defined by T 1
k (τM)(j1

0σ) = j1
0(τM ◦ σ).

Let (xi) be a coordinate system on M and (xi, vi
A) the induced coordinate system on

T 1
k M . From the definition we deduce that the local expression of a SOPDE ξ is

ξA(xi, vi
A) = vi

A

∂

∂xi + (ξA)i
B

∂

∂vi
B

, 1 ≤ A ≤ k. (54)

We recall that the first prolongation φ(1) of φ : U ⊂ Rk → M is defined by

φ(1) : U ⊂ Rk −→ T 1
k M)

t −→ φ(1)(t) = j1
0φt

where φt(s) = φ(s + t) for all t, s ∈ R. In local coordinates:

φ(1)(t1, . . . , tk) = (φi(t1, . . . , tk),
∂φi

∂tA
(t1, . . . , tk)), 1 ≤ A ≤ k , 1 ≤ i ≤ n . (55)

Proposition 6.8 Let ξ an integrable k-vector field on T 1
k M . The necessary and sufficient

condition for ξ to be a Second Order Partial Differential Equation (SOPDE) is that its

integral sections are first prolongations φ(1) of maps φ : Rk → M . That is

ξA(φ(1)(t)) = φ(1)
∗ (t)(

∂

∂tA
)(t)

for all A = 1, . . . , k. These maps φ will be called solutions of the SOPDE ξ.

¿From (55) and (54) we have

Proposition 6.9 φ : Rk → M is a solution of the SOPDE ξ = (ξ1, . . . , ξk), locally given by

(54), if and only if

∂φi

∂tA
(t) = vi

A(φ(1)(t)),
∂2φi

∂tA∂tB
(t) = (ζA)i

B(φ(1)(t)).
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If ξ : T 1
k M → T 1

k T 1
k M is an integrable SOPDE then for all integral sections σ : U ⊂

Rk → T 1
k M we have (τM ◦ σ)(1) = σ where τM : T 1

k M → M is the canonical projection.

Now we show how to characterize the SOPDEs using the canonical k-tangent structure

of T 1
k M .

Definition 6.10 The canonical vector field C on T 1
k M is the infinitesimal generator of the

one parameter group
R × (T 1

k M) −→ T 1
k M

(s, (xi, vi
B)) −→ (xi, es vi

B) .

Thus C is locally expressed as follows:

C =
∑

B

CB =
∑

i,B

vi
B

∂

∂vi
B

, (56)

where each CB corresponds with the canonical vector field on the B-th copy of TM on T 1
k M .

Let us remark that each vector field CA on T 1
k M can also be defined using the A-lifts of

vectors as follows: CA((v1)q, . . . , (vk)q) = ((vA)q)A(v)) .

From (5), (54) and (56) we deduce the following

Proposition 6.11 A k-vector field ξ = (ξ1, . . . , ξk) on T 1
k M is a SOPDE if and only if

JA(ξA) = CA, ∀ 1 ≤ A ≤ k,

where (J1, . . . , Jk) is the canonical k-tangent structure on T 1
k M .

6.5 Lagrangian formalism and k-tangent structures

Given a Lagrangian function of the form L = L(xi, vi
A) one obtains, by using a variational

principle, the generalized Euler-Lagrange equations for L:

k
∑

A=1

d

dtA
(
∂L

∂vi
A

) −
∂L

∂xi = 0, vi
A =

∂xi

∂tA
. (57)

In this section, following the ideas of Günther [4], we will describe the above equations

(57) in terms of the geometry of k-tangent structures. In classical mechanics the symplec-

tic structure of Hamiltonian theory and the tangent structure of Lagrangian theory play
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complementary roles [21, 22, 23, 24, 25]. Our purpose in this section is to show that the

k-symplectic structures and the k-tangent structures play similarly complementary roles.

First of all, we note that such a L can be considered as a function L : T 1
k M → R with M

a manifold with local coordinates (xi). Next, we construct a k–symplectic structure on the

manifold T 1
k M , using its canonical k–tangent structure for each 1 ≤ A ≤ k. We consider:

• the vertical derivation ıJA of type ı∗ defined by JA, which is defined by

ιJAf = 0

(ιJAα)(X1, . . . , Xp) =
p

∑

j=1

α(X1, . . . , J
AXj, . . . , Xp) ,

for any function f and any p-form α on T 1
k M ;

• the vertical differentation dJA of forms on T 1
k M defined by

dJA = [ıJA , d] = ıJA ◦ d − d ◦ ıJA ,

where d denotes the usual exterior differentation.

Let us consider the 1–forms (βL)A = dJAL , 1 ≤ A ≤ k. In a local coordinate system

(xi, vi
A) we have

(βL)A =
∂L

∂vi
A

dxi, 1 ≤ A ≤ k. (58)

Definition 6.12 A Lagrangian L is called regular if and only if

det(
∂2L

∂vi
A∂v

j
B

) 5= 0, 1 ≤ i, j,≤ n, 1 ≤ A, B ≤ k . (59)

By introducing the following 2–forms (ωL)A = −d(βL)A , 1 ≤ A ≤ k, one can easily prove

the following.

Proposition 6.13 L : T 1
k M −→ R is a regular Lagrangian if and only if ((ωL)1, . . . , (ωL)k, V )

is a k-symplectic structure on T 1
k M , where V denotes the vertical distribution of τ : T 1

k M →

M .
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Let L : T 1
k M −→ R be a regular Lagrangian and let us consider the k–symplectic

structure ((ωL)1, . . . , (ωL)k, V ) on T 1
k M defined by L. Let Ω(

L be the morphism defined by

this k–symplectic structure

Ω(
L : T 1

k (T 1
k M) −→ T ∗(T 1

k M).

Thus, we can set the following equation:

Ω(
L(X1, . . . , Xk) = dEL, (60)

where EL = C(L) − L, and where C is the canonical vector field of the vector bundle

τ : T 1
k M → M .

Proposition 6.14 Let L be a regular Lagrangian. If ξ = (ξ1, · · · , ξk) is a solution of (60)

then it is a SOPDE. In addition if ξ is integrable then the solutions of ξ are solutions of the

Euler-Lagrange equations (57).

Proof It is a direct computation in local coordinates using (54), (56) , (58) and (59). .

Remark The Legendre map defined by Günther [4]

FL : T 1
k M −→ (T 1

k )∗M

can be described here as follows: if vx = (v1, . . . , vk)x ∈ (T 1
k M)q with q ∈ M and vA ∈ TqM ,

then FL(vx) = (ṽ1, . . . , ṽk) ∈ (T 1
k M)∗x, where ṽA ∈ T ∗

xM is given by

ṽA(z) = (βL)A(z̄), 1 ≤ A ≤ k,

for any z ∈ TxM , where z̄ ∈ Tvx(T
1
k M) with τ∗(z̄) = z.

From (58) we deduce that FL is locally given by

(xi, vi
A) −→ (xi,

∂L

∂vi
A

). (61)

and from (58) and (61) we deduce the following

Lemma 6.15 For every 1 ≤ A ≤ k, we have (ωL)A = FL∗ωA, where ω1, . . . ,ωk are the

2-forms of the canonical k–symplectic structure of (T 1
k )∗M .
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Then from (65) we get that

Proposition 6.16 Let L be a Lagrangian. The following conditions are equivalent:

1) L is regular.

2) FL is a local diffeomorphism.

3) ((ωL)1, . . . , (ωL)k, V ) is a k-symplectic structure on T 1
k M .

6.6 Second order partial differential equations on Rk × T 1
k
M

The idea of this subsection is to characterize the integrable k-vector fields on Rk ×T 1
k M such

that their integral sections are canonical prolongations of maps from Rk to M .

Definition 6.17 A k-vector field on Rk × T 1
k M , that is, a section ξ ≡ (ξ1, . . . , ξk) : Rk ×

T 1
k M → T 1

k (Rk ×T 1
k M) of the projection τRk×T 1

k M : T 1
k (Rk ×T 1

k M) → Rk ×T 1
k M , is a Second

Order Partial Differential Equation (SOPDE) if and only if:

1) dtA(ξB) = δAB

2) Tpr2 ◦ ξB ◦ it is a SOPDE on T 1
k M , ∀t ∈ Rk, where pr2 : Rk × T 1

k M → T 1
k M is the

canonical projection and it : T 1
k M → Rk × T 1

k M is the canonical inclusion.

Let (xi) be a coordinate system on M and (tA, xi, vi
A) the induced coordinate system on

Rk × T 1
k M . From (63) we deduce that the local expression of a SOPDE ξ is

ξA(xi, vi
A) =

∂

∂tA
+ vi

A

∂

∂xi + (ξA)i
B

∂

∂vi
B

, 1 ≤ A ≤ k (62)

where (ξA)i
B are functions on Rk × T 1

k M .

Definition 6.18 For φ : Rk → M a map, we define the first prolongation φ(1) of φ as the

map
φ(1) : Rk −→ J1π ≡ Rk × T 1

k M,
t −→ j1

t φ ≡ (t, j1
0φt)

In local coordinates:

φ(1)(t1, . . . , tk) = (t1, . . . , tk,φi(t1, . . . , tk),
∂φi

∂tA
(t1, . . . , tk)), 1 ≤ A ≤ k , 1 ≤ i ≤ n . (63)
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Proposition 6.19 Let ξ an integrable k-vector field on Rk × T 1
k M . The necessary and

sufficient condition for ξ to be a Second Order Partial Differential Equation (SOPDE) is

that its integral sections are first prolongations φ(1) of maps φ : Rk → M . That is

ξA(φ(1)(t)) = φ(1)
∗ (t)(

∂

∂tA
)(t)

for all A = 1, . . . , k.

These maps φ will be called solutions of the SOPDE ξ.

¿From (63) and (62) we have

Proposition 6.20 φ : Rk → M is a solution of the SOPDE ξ, locally given by (62), if and

only if
∂φi

∂tA
(t) = vi

A(φ(1)(t)),
∂2φi

∂tA∂tB
(t) = (ζA)i

B(φ(1)(t)).

If ξ is an integrable SOPDE then for all integral sections σ : U ⊂ Rk → Rk × T 1
k M we

have (τM ◦ σ)(1) = σ where τM : Rk × T 1
k M → M is the canonical projection. Now we show

how to characterize the SOPDEs on Rk × T 1
k M using the canonical k-tangent structure of

T 1
k M . Let us consider on Rk × T 1

k M the tensor fields Ĵ1, . . . , Ĵk of type (1, 1), defined as

follows:

ĴA = JA − CA ⊗ dtA, 1 ≤ A ≤ k .

where we have transported the canonical k-tangent structure (J1, . . . , Jk) of T 1
k M to Rk ×

T 1
k M .

Proposition 6.21 A k-vector field ξ = (ξ1, . . . , ξk) on Rk × T 1
k M is a SOPDE if and only

if

ĴA(ξA) = 0, η̄A(ξB) = δAB,

for all 1 ≤ A, B ≤ k.

Remark: Let us consider the trivial bundles π : E = Rk×M → Rk and π1 : Rk×T 1
k M →

Rk. We identify each SOPDE (ξ1, . . . , ξk) with the following semi-holonomic second order

jet field
J1π ≡ Rk × T 1

k M → J1π1 ≡ Rk × T 1
k (T 1

k M)
(tA, qi, vi

A) → (tA, qi, vi
A, vi

A, (ξA)i
B)
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If the SOPDE ξ on Rk × T 1
k M is integrable, then its integral sections are canonical

prolongations of maps from Rk to M and then ξ defines a second-order jet field Γ on π

whose coordinate representation of the corresponding connection Γ̃ is

Γ̃ = dtA ⊗

(

∂

∂tA
+ vi

A

∂

∂qi + (ξA)i
B

∂

∂vi
B

)

,

since (ξA)i
B = (ξB)i

A (see [17]).

The integrability of the SOPDE is equivalent to the condition given by R = 0, where R

is the curvature tensor of the above connection (see [42] and [17]).

6.7 Lagrangian formalism and stable k-tangent structures

Given a nonautonomous Lagrangian L = L(tA, qi, vi
A) one realizes that such an L can be

considered as a function L : Rk × T 1
k M → R.

In this section we shall give a geometrical description of Euler Lagrange equations (57)

using a k-cosymplectic structure on Rk ×T 1
k M associated to the regular Lagrangian L. This

k-cosymplectic structure shall be constructed using the canonical tensor fields J̃A, 1 ≤ A ≤ k

of type (1, 1) on Rk × T 1
k M defined by

J̃A =
∂

∂tA
⊗ dtA + JA =

∂

∂tA
⊗ dtA +

n
∑

i=1

∂

∂vi
A

⊗ dqi , 1 ≤ A ≤ k ,

where we have transported the canonical k-tangent structure (J1, . . . , Jk) of T 1
k M to Rk ×

T 1
k M . The family (J̃A, dtA, ∂

∂tA
) is called the canonical stable k-tangent structure on Rk ×

T 1
k M .

For each 1 ≤ A ≤ k, we define:

• the vertical derivation ıJA of forms on Rk × T 1
k M by

ı
J̃Af = 0 , (ı

J̃Aα)(X1, . . . , Xp) =
p

∑

j=1

α(X1, . . . , J̃AXj, . . . , Xp) ,

for any function f and any p-form α on Rk × T 1
k M ;

• the vertical differentation d
J̃A of forms on Rk × T 1

k M by

d
J̃A = [ı

J̃A, d] = ı
J̃A ◦ d − d ◦ ı

J̃A ,

where d denotes the usual exterior differentation.
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Let us consider the 1–forms

(βL)A = d
J̃AL− ξA(L)dtA, 1 ≤ A ≤ k .

In bundle coordinates (tA, qi, vi
A) we have

(βL)A =
n

∑

i=1

∂L

∂vi
A

dqi, 1 ≤ A ≤ k . (64)

Definition 6.22 A Lagrangian L is called regular if and only if the Hessian matrix
(

∂2L

∂vi
A∂v

j
B

)

(65)

is non–singular.

Now, we introduce the following 2–forms

(ωL)A = −d(βL)A , 1 ≤ A ≤ k .

Using local coordinates one can easily prove the following proposition.

Proposition 6.23 Let L : Rk × T 1
k M −→ R be a regular Lagrangian, and V1,0 the vertical

distribution of the bundle π1,0 : Rk × T 1
k M −→ Rk × M . Then, L is regular if and only if

(Rk × T 1
k M, η̄A, (ωL)A, V1,0) is a k–cosymplectic manifold.

Let L : Rk × T 1
k M −→ R be a regular Lagrangian and (dtA, (ωL)A, V1,0) the associated

k-cosymplectic structure on Rk × T 1
k M . The equations

dtA((ξL)B) = δAB, (ξL)A (ωL)B = 0, 1 ≤ A, B ≤ k . (66)

define the Reeb vector fields {(ξL)1, . . . , (ξL)k} on Rk × T 1
k M which are locally given by

(ξL)A =
∂

∂tA
+ ((ξL)A)i

B

∂

∂vi
B

, (67)

where the functions ((ξL)A)i
B satisfy

∂2L

∂tA∂vj
C

+
∂2L

∂vi
B∂v

j
C

((ξL)A)i
B = 0 , (68)

for all 1 ≤ A, B, C ≤ k and 1 ≤ i, j ≤ n.
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Since L is regular, from the local conditions (68) we can define, in a neighbourhood of

each point of Rk ×T 1
k M , a k–vector field that satisfies (66). Next one can construct a global

k–vector field ξL, which is a solution of (66), by using a partition of unity.

Let L be a regular Lagrangian and let Ω(
L be the 3-morphism defined by the k-cosymplectic

structure (dtA, (ωL)A, V1,0), as in (52):

Ω(
L : T 1

k (Rk × T 1
k M) −→ T ∗(Rk × T 1

k M)

(X1, . . . , Xk) −→ Ω(
L(X1, . . . , Xk) =

k
∑

A=1

XA (ωL)A + dtA(XA)dtA .
(69)

A direct computation in local coordinates proves the following Proposition.

Proposition 6.24 Let L be a regular Lagrangian and let X = (X1, . . . , Xk) be a k-vector

field such that

dtA(XB) = δAB, 1 ≤ A, B ≤ k

Ω(
L(X1, . . . , Xk) = dEL +

k
∑

A=1

(1 − (ξL)A(EL))dtA
(70)

where EL = C(L) − L. Then X = (X1, . . . , Xk) is a SOPDE. In addition, if X =

(X1, . . . , Xk) is integrable then its solutions satisfy the Euler-Lagrange equations (57).

In conclussion, we can consider Eqs. (70) as a geometric version of the Euler-Lagrange

field equations for a regular Lagrangian.

Remark We have given a geometric version of the Euler-Lagrange equations for a non

autonomous Lagrangian by constructing a k-cosymplectic structure on Rk × T 1
k M defined

from the Lagrangian and the canonical stable k-tangent structure on Rk×T 1
k M . We can also

construct this k-cosymplectic structure using the Legendre tranformation FL of L which is

the map

FL : R
k × T 1

k M −→ R
k × (T 1

k )∗M

defined as follows:

If (t, v) = (t1, . . . , tk, v1, . . . , vk) ∈ Rk × (T 1
k M)x with x ∈ M and vA ∈ TxM , then

FL(t, y) = (t1, . . . , tk, p1, . . . pk) ∈ R
k × (T 1

k M)∗x , pA ∈ T ∗
xM
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is given by

pA(vx) = (βL)A(v̄x), 1 ≤ A ≤ k,

for any vx ∈ TxM , where v̄x ∈ Tv(T 1
k M) is any tangent vector such that dτM(v)(v̄x) = vx,

with τM : T 1
k M −→ M the canonical projection. In induced coordinates we have

FL : (tA, qi, vi
A) −→ (tA, qi,

∂L

∂vi
A

). (71)

Now, from (64) and (71) we deduce the following.

Lemma 6.25 (ωL)A = FL∗((ω0)A), dtA = FL∗((η0)A), for all A.

Then we have

Proposition 6.26 The following conditions are equivalent:

1) L is regular.

2) FL is a local diffeomorphism.

3)(dtA, (ωL)A, V1,0) is a k-cosymplectic structure on Rk × T 1
k M .

.

7 The Cartan-Hamilton-Poincaré Form on J1π and LπE

In this section we further explore relationships between n-symplectic geometry on frame

bundles and multisymplectic geometry. Since m = n + k = dim(E) we will refer to the n-

symplectic geometry on LE as m-symplectic geometry, and base the discussion on the n-form

on J1π considered by Cartan, Hamilton and Poincaré. This form has various names in the

literature; here we will use the name Cartan-Hamilton-Poincaré (CHP) form. Although this

n-form on J1π has been in the literature for many years, its definition on LπE is relatively

recent. It appeared first in [48], where the n-form was defined in terms of newly defined

Cartan-Hamilton-Poincaré 1-forms. These Cartan-Hamilton-Poincaré 1-forms play the role

of an m-symplectic potential on LπE and are discussed in Section 7.5. In Section 7.4 we give

a new geometrical definition of ΘL on J1π. See also Section 9.4 where the Cartan-Hamilton-

Poincaré 1-forms are defined using an m-symplectic Legendre transformation.
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7.1 The Cartan-Hamilton-Poincaré Form on J1π

One method used to construct the Cartan-Hamilton-Poincaré Form on J1π is to first con-

struct a vector valued m-form Sω on J1π associated with a volume form ω on M , as follows:

For each 1-form σ on J1π the vector valued 1-form Sσ along π1 : J1π → M is defined by

α((Sσ)(X)) = σ(Sα(X))

for any vector field X on J1π and any 1-form α on M . Recall Sα was defined in Section 2.4.

Now Sω is defined according to the rule

Sω σ = ıSσω

where ıSσ is the derivation of type ı∗ corresponding to Sσ, that is

σ(Sω(X1, . . . , Xm)) = (ıSσω)(X1, . . . , Xm) =
n

∑

i=1

ω((π1)∗X1, · · · , Sσ(Xi), . . . , (π1)∗Xm)

for any vector fields X1, . . . , Xm on J1π. In coordinates

Sω = (dyA − yA
j dxj) ∧

(

∂

∂xi
ω

)

⊗
∂

∂vA
i

(72)

If Lπ : J1π → ΛnM is a Lagrangian density, then Lπ = Lω where L : J1π → R. The

Cartan-Hamilton-Poincaré n-form of L is defined by

ΘL = Lω + Sω
∗dL = Lω + dL ◦ Sω . (73)

In coordinates

ΘL = Lω +
∂L

∂yA
i

(dyA − yA
j dxj) ∧ (

∂L

∂xi
ω) (74)

7.2 The tensors Sα and Sω on J1π viewed from LπE

For each 1-form α on M , we shall define on LπE a tensor field S̃α, of type (1, 1) that projects

on the tensor Sα on J1π . Let (Bi = B(r̂i), BA = B(r̂A)) be the standard vector fields of

any torsion free linear connection on λ : LπE → E. In local coordinates we have

Bi = vs
i

∂

∂xs
+ vC

i

∂

∂yC
+ Vi , BA = vC

A

∂

∂yC
+ VA (75)
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where Vi, VA are vertical with respect to λ.

Now if α is an arbitrary 1-form on M and (π ◦λ)∗α its pull-back to LπE, we consider on

LπE the functions ((π ◦ λ)∗α)(Bi) for each 1 ≤ i ≤ n. In coordinates, if α = αr dxr, then

from (75)

((π ◦ λ)∗α)(Bi) = αr dxr

(

vs
i

∂

∂xs
+ vC

i

∂

∂yC
+ Vi

)

= αr vr
i . (76)

Taken together the function α̂ = (αava
i )r̂i is the (Rn)∗-valued tensorial 0-form on LE

corresponding to α on M .

Definition 7.1 The vector-valued 1-form S̃α on LπE is defined by

S̃α = ((π ◦ λ)∗α)(Bi) E∗i
B ⊗ θB .

From (36) and (76) we obtain that in local coordinates

S̃α = αj (dyB − uB
t dxt) ⊗

∂

∂uB
j

. (77)

Proposition 7.2 The relationship between S̃α on LπE and Sα on J1π is given by

S̃α ρ∗ = ρ∗ Sα

that is

ρ∗(u)(S̃α(u)(Xu)) = Sα(ρ(u))(ρ∗(u)(Xu))

for any u ∈ LπE and any Xu ∈ Tu(LπE).

Proof : It is an immediate consequence of the local expressions of S̃α and Sα taking into

account that ρ∗yB
t = uB

t .

Now, proceeding analogously, we construct a tensor field S̃ω of type (1, n) on LπE using

the tensor field S̃ω on LπE, associated with a volume form ω on M . We then construct the

corresponding Cartan-Hamilton-Poincaré form on LπE.

For each 1-form σ on LπE the vector valued 1-form S̃σ along π ◦λ : LπE → M is defined

by

α((S̃σ)(X)) = σ(S̃α(X)) (78)
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for any vector field X on LπE and any 1-form α on M . We shall compute the local expression

of this 1-form. If we write

σ = σi dxi + σA dyA + σj
i dui

j + σj
B duB

j + σA
B duB

A

and we take α = dxj then from (33) and (78) we obtain

dxj(S̃σ(
∂

∂xi
)) = −σj

B uB
i , dxj(S̃σ(

∂

∂yA
)) = σj

A,

dxj(S̃σ(
∂

∂ui
j

)) = dxj(S̃σ(
∂

∂uA
i

)) = dxj(S̃σ(
∂

∂uA
B

)) = 0

Therefore the local expression of S̃σ is

S̃σ = σj
B (dyB − uB

t dxt) ⊗
∂

∂xj
. (79)

Definition 7.3 The tensor field S̃ω is defined according to the rule

S̃ω σ = ı
S̃σ

Ω

where ıSσ is the derivation of type ı∗ corresponding to S̃σ, that is

σ(S̃ω(X1, . . . , Xn)) = (ıSσω)(X1, . . . , Xn) (80)

=
n

∑

j=1

ω((π ◦ λ)∗X1, . . . , S̃σ(Xj), . . . , (π ◦ λ)∗Xn) (81)

for any vector fields X1, . . . , Xn on LπE and any 1-form σ on LπE .

From (79) and (80) we obtain that the local expression of S̃ω is

S̃ω = (dyA − uA
t dxt) ∧

(

∂

∂xi
ω

)

⊗
∂

∂uA
i

(82)

Proposition 7.4 The relationship between S̃ω on LπE and Sω on J1π is given by

S̃ω ρ∗ = ρ∗ Sω

that is

ρ∗(u)
(

S̃ω(u) ((Xu)1, . . . , (Xu)n)
)

= Sω(ρ(u)) (ρ∗(u) ((Xu)1) , . . . , ρ∗(u) ((Xu)n))

for any u ∈ LπE and any (Xu)1, . . . , (Xu)n ∈ Tu(LπE).

Proof : It is an immediate consequence of the local expressions (72) and (77) of S̃ω and Sω

taking into account that ρ∗yB
t = uB

t .
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7.3 The Cartan-Hamilton-Poincaré form ΘL on J1π viewed from

LπE

Using the tensor field S̃ω we shall construct an m-form on LπE that projects to the corre-

sponding Cartan-Hamilton-Poincaré m-form on J1π.

Definition 7.5 A Lagrangian on LπE is a function L : LπE → R.

Definition 7.6 [48] A Lagrangian on LπE is lifted if it satisfies the auxiliary conditions

E∗i
j (L) = 0 E∗A

B (L) = 0 (83)

Remark Using (20) these conditions imply that L is constant on the fibers of ρ : LπE →

J1π, and thus is the pull up of a function L on J1π, that is ρ∗L = L.

Definition 7.7 If L : LπE → R is a lifted Lagrangian on LπE, then we define the Cartan-

Hamilton-Poincaré m-form of L by

θL = Lω + S̃∗
ωdL = Lω + dL ◦ S̃ω .

If ω = dnx = dx1 ∧ · · · ∧ dxn then from (82) we obtain that the local expression of θL is

θL =

(

L − uA
i

∂L

∂uA
i

)

dnx +
∂L

∂uA
i

dyA ∧ dn−1xi . (84)

Proposition 7.8 If L is a lifted Lagrangian then the corresponding m-form satisfies ρ∗ΘL =

θL, where ΘL is the Cartan-Hamilton-Poincaré n-form on J1π corresponding to L .

Proof It follows from the local expressions taking into account that ρ∗yA
i = uA

i .
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7.4 The m-symplectic structure on LπE and the formulation of the

Cartan-Hamilton-Poincaré n-form

We consider next the definition of the Cartan-Hamilton-Poincaré 1-forms on LπE introduced

in [48, 32]. These 1-forms combine into an Rm-valued 1-form whose exterior derivative plays

the role of a general m-symplectic structure on LπE.

Definition 7.9 [48] Let L : LπE → R be a lifted Lagrangian on LπE , and τ(n) a positive

function of n = dim M . The Cartan-Hamilton-Poincaré 1-forms θαL on LπE are

θi
L = τ(n)Lθi + E∗i

A (L)θA (85)

θA
L = θA (86)

where E∗i
A are defined above in (20), and θi and θA are the components of the canonical

soldering 1-form on LπE.

Remark The quantities E∗i
A (L), referred to as the ”covariant canonical momenta” in [48],

are globally defined on LπE. In local canonical coordinates (zα, πµ
ν ), these quantities have

the local expressions

E∗i
A (L) = πi

jp
j
BvB

A , pj
B =

∂ L

∂uB
j

(87)

and clearly are the frame components of the ”canonical field momenta” pj
B = ∂ L

∂uB
j
. For

different values of τ one can obtain the de Donder-Weyl theory [49, 44] and the Caratheodory

theory [50, 44] as special cases of the formalism presented in reference [48]. The significance

of these CHP 1-forms as regards other geometrical theories was also considered by MacLean

and Norris. In [48] it was shown that one may construct the CHP n-form on J1π from

the CHP 1-forms on LπE. In this regard see also references [11, 28]. We now recall the

construction of the Cartan-Hamilton-Poincaré n-form on J1π from these CHP 1-forms.

Proposition 7.10 [48] Let (Bi, BA) denote the standard horizontal vector fields of any tor-

sion free linear connection on λ : LπE → E, and let vol denote the pull up to LπE of a fixed



7 THE CARTAN-HAMILTON-POINCARÉ FORM ON J1π AND LπE 50

volume n-form ω on M . Set voli = Bi vol. Then when τ(n) = 1
n

the n-form

θL := θi
L ∧ voli

passes to the quotient to define the CHP-n-form ΘL on J1π associated with vol = ω.

Next we shall show here that the Cartan-Hamilton-Poincaré 1-forms can be obtained

from the canonical m-tangent structure J i, JA on LπE . Let Λ = f1 ∧ · · ·∧fn be a fixed con-

travariant volume on M , with fi locally written as fi = αj
i

∂
∂xj . Thus Λ is a nowhere vanishing

n-vector on M , which is the covariant version of a volume form on M . In coordinates

λ = det(αi
j)
∂

∂x1
∧ · · · ∧

∂

∂xn

Now given an arbitrary point u = (ei, eA)e on LπE we can define the n-vector

[ẽi] = ẽ1 ∧ · · · ∧ ẽn

where ẽi = (π ◦ λ)∗(u)(ei). [ẽi] is a well-defined n-vector at (π ◦ λ)(u) = π(e) ∈ M since the

vectors ẽi are linearly independent. In coordinates

[ẽi] = det(vi
j)
∂

∂x1
∧ · · · ∧

∂

∂xn

We can now define a function σ : LπE → R relative to the fixed contravariant volume Λ

on M by the formula

[ẽi] = σ(u)λ(π(e))

Using the local expressions above it is easy to see that in local coordinates on LπE one

has

σ(u) =
det(vi

j)(u)

det(αi
j(π(e))

(88)

Proposition 7.11 Let L be a lifted Lagrangian on LπE and let σ be the function defined on

LπE relative to a fixed contravariant volume Λ on M . Then the Cartan-Hamilton-Poincaré

1-forms on LπE are given by the formula

θi
L =

1

σ
dJ̃i

(σL)
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where

J̃ i =
1

n
(E∗i

j ⊗ θj) + E∗i
A ⊗ θA

and dJ̃i = [ıJ̃i , d] .

Proof From (20) and (88) we obtain that

E∗i
j (σ) = σ δij , E∗i

a A(σ) = 0

and from (83) we obtain

E∗i
j (σL) = σL δij , E∗i

A (σ L) = σE∗i
A (L) .

Now from these last identities we have

1

σ
dJ̃i(σ L) =

1

σ

(

d(σ L) ◦ J̃ i
)

=
1

σ

(

1

n
E∗i

j (σL)θj + E∗i
A (σL)θA

)

=
1

σ

(

1

n
σL δijθ

j + σE∗i
A (L)θA

)

=
1

n
L θi + E∗i

A (L) θA .

Remark To these three constructions of the Cartan-Hamilton-Poincaré 1-forms on LπE we

add a fourth in Section 9.4 where we show that the θαL are the pull-backs, under a suitable

defined m-symplectic Legendre transformation, of the canonical m-symplectic structure on

LE.

8 Multisymplectic formalism

An alternative way to derive the field equations is to use the so-called multisymplectic formal-

ism, developed by the Tulczyjew school in Warsaw (see [36, 37, 51, 52]), and independently

by Garćıa and Pérez-Rendón [53, 54] and Goldschmidt and Sternberg [1]. This approach

was revised by Martin [55, 56] and Gotay et al [34, 35, 57, 58, 59], and more recently by

Cantrijn et al [38, 39].

8.1 Lagrangian formalism

Assume a Lagrangian L : J1π → R where J1π is the 1-jet prolongation of a fibered manifold

π : E → M . M is supposed to be oriented with volume form ω. We take adapted coordinates

(xi, yA, yA
i ) such that ω = dx1 ∧ · · · ∧ dxn = dnx.
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Denote ΩL = −dΘL where ΘL is the Cartan-Hamilton-Poincaré m-form introduced in

7.1 . From (73) we have that in local coordinates

ΩL = d(yA
i

∂L

∂yA
i

− L) ∧ dnx − d(
∂L

∂yA
i

) ∧ dyA ∧ dn−1xi

where dn−1xi = ∂
∂xi ω.

Definition 8.1 ΩL is called the Cartan-Hamilton-Poincaré (n + 1)-form.

One can use this multisymplectic form to re-express, in an intrinsic way, the Euler-

Lagrange equations, which in coordinates take the classical form

k
∑

i=1

∂

∂xi
(
∂L

∂yA
i

)(xi,φB(x),
∂φB

∂xi
(x)) −

∂L

∂yA
(xi,φB(x),

∂φB

∂xi
(x)) = 0, (89)

for a (local) section φ of π : E → M .

Theorem 8.2 For a section φ of π the following are equivalent:

(i) the Euler-Lagrange equations (89) hold in coordinates;

(ii) for any vector field X on J1π

(j1φ)∗(X ΩL) = 0 . (90)

The proof can be found in [34].

ΩL is a multisymplectic form on J1π provided L is regular, that is, the Hessian matrix

(
∂2L

∂yA
i ∂y

B
j

)

is nonsingular.

We can extend equations (90) to sections τ of J1π → M , that is we consider sections τ

such that

τ ∗(X ΩL) = 0 , (91)

for any vector field X on J1π . If the Lagrangian L is regular then both problems (90) and

(91) are equivalent, that is, such a τ is automatically a 1-jet prolongation τ = j1φ. Equation

(91) corresponds to the so called de Donder problem (see Binz et al [60].)
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8.2 Hamiltonian formalism

We have an exact sequence of vector bundles over E:

0 →
∧n

1
E

i
−→

∧n

2
E

µ
−→ J1π∗ → 0

where J1π∗ is the quotient vector bundle

J1π∗ =

∧n

2
E

∧n

1
E

,

i is the inclusion, and µ is the projection map.

J1π∗ is sometimes defined as the affine dual bundle of J1π (see [17]). We have taken

local coordinates (xi, yA, p) on
∧n

1 E and (xi, yA, p, pi
A) on

∧n
2 E, and then (xi, yA, pi

A) can

be taken as local coordinates in J1π∗.

To develop a Hamiltonian theory, we need a Hamiltonian, in this case a section H :

J1π∗ →
∧n

2 E of the canonical projection µ. In coordinates, we have

H(xi, yA, pi
A) = (xi, yA,−Ĥ, pi

A)

where Ĥ = Ĥ(xi, yA, pi
A) ∈ C∞(J1π∗, R).

Take the pull-back ΩH = H∗Ω2
E (we also have ΘH = H∗Θ2

E such that ΩH = −dΘH),

then from (48) we have

ΘH = −Ĥdnx + pi
AdyA ∧ dn−1xi, ΩH = dĤ ∧ dnx − dpi

A ∧ dyA ∧ dn−1xi ,

ΩH is again a multisymplectic (n + 1)-form. Now solutions of the Hamilton equations

∂γA

∂xi
= −

∂Ĥ

∂pi
A

,
∑

i

∂γi
A

∂xi
=
∂Ĥ

∂yA
.

are obtained by looking for sections

γ : M −→ J1π∗

(xi) .→ (xi, γA, γi
A)

such that

γ∗(Y ΩH) = 0

for any vector field Y on J1π∗, see [38] .
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To relate both formalisms, we must use the Legendre transformation. For L, we define a

fibered mapping over E, Leg : J1π −→
∧n

1 E, by

[Leg(j1
xφ)](X1, . . . , Xn) = (ΘL)j1

xφ
(X̃1, . . . , X̃n)

for all X1, . . . , Xn ∈ Tφ(x))E, where X̃1, . . . , X̃n ∈ Tj1
xφ

(J1π) are such that they project on

X1, . . . , Xn, respectively.

In local coordinates

Leg(xi, yA, yA
i ) = (xi, yA,L− yA

i

∂L

∂yA
i

,
∂L

∂yA
i

) .

If we compose Leg : J1π →
∧n

1 E with µ :
∧n

1 E → J1π∗, we obtain the reduced Legendre

transformation
leg : J1π −→ J1π∗

(xi, yA, yA
i ) .→ (xi, yA, ∂L

∂yA
i
)

which extends the usual one in mechanics, and the Legendre map defined by Günther. (see

remark in Section 6.5).

A direct computation shows that leg∗Θ2
E = ΘL, leg∗Ω2

E = ΩL.

It is clear that leg : J1π → J1π∗ is a local diffeomorphism if and only if L is regular. If

L is regular, then we can define a (local) section H as follows H = Leg ◦ leg−1

J1π −→
∧n

2
E

.

Proposition 8.3 The following assertions are equivalents:

1) L is regular.

2) ΩL is multisymplectic, and

3) leg : J1π → J1π∗ is a local diffeomorphism.

8.3 Ehresmann connections and the Lagrangian and Hamiltonian

formalisms

A different geometric version of the field equations was given recently, based on Ehresmann

connection [39] .
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In mechanics we look for curves and their linear approximations; that is, we look for

tangent vectors. In Field Theory, we look for sections, and their linear approximations are

just horizontal subspaces of Ehresmann connections in the fibration π1 : J1π → M .

A connection in π1 (in the sense of Ehresmann [61, 62]) is defined by a complementary

distribution H of V π1, i.e., we have the following Withney sum of vector bundles over E:

T (J1π) = H ⊕ V π1 .

As is well-known, we can characterize a connection in π1 as a (1,1)-tensor field Γ on J1π

such that

• Γ2 = Id, and

• the eigenspace at the point z ∈ J1π corresponding to the eigenvalue −1 is the vertical

subspace (V π1)z.

In other words, Γ is an almost product structure on J1π whose eigenvector bundle corre-

sponding to the eigenvalue −1 is just the vertical subbundle V π1.

We denote by

h =
1

2
(Id + Γ) , v =

1

2
(Id − Γ) ,

the horizontal and vertical projectors, respectively. Hence, the horizontal distribution is

given by H = Im h and Im v = V π1.

We say that Γ is flat if the horizontal distribution is integrable. In such a case, from the

Frobenius theorem, there exists a horizontal local section γ of π1 passing through each point

of J1π. Let us recall that a local section γ of π1 : J1π → M is called horizontal if it is an

integral submanifold of the horizontal distribution.

Suppose that h is locally expressed in fibered coordinates (xi, yA, yA
i ) as follows:

h = dxi ⊗ [
∂

∂xi
+ ΓA

i

∂

∂yA
+ ΓA

ji

∂

∂yA
j

] (92)

A direct computation in local coordinates shows that the equation

ıhΩL = (n − 1)ΩL
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may be considered as the geometric version of the field equations, where h is the horizontal

projector of the Ehresmann connection in J1π → M . Indeed, from (92) and the local

expression of ΩL we deduce that ıhΩL = (n − 1)ΩL if and only if

∂L

∂yA
−

∂2L

∂yA
i ∂x

i
− ΓB

i

∂2L

∂yA
i ∂y

B
− ΓB

ij

∂2L

∂yA
i ∂y

B
j

+ (ΓB
i − yB

i )
∂2L

∂yA∂yB
i

= 0 , (93)

(ΓB
j − yB

j )
∂2L

∂yA
i ∂y

B
j

= 0 . (94)

If L is regular, (94) implies ΓB
j = yB

j , for all B, j, and then (93) becomes

∂L

∂yA
−

∂2L

∂yA
i ∂x

i
− yB

i

∂2L

∂yA
i ∂y

B
− ΓB

ji

∂2L

∂yA
i ∂y

B
j

= 0 , (95)

Hence, if Γ is flat and γ : M → J1π is a a horizontal local section locally given by γ(xi) =

(xi, γA, γA
i ), then taking into account that γ∗(TxM) = Hγ(x) we obtain

ΓA
i = yA

i =
∂γA

∂xi
= γA

i , ΓA
ji =

∂γA
j

∂xi
=

∂2γA

∂xi∂xj
. (96)

This implies that γ is a 1-jet prolongation, i. e. γ = j1φ and, φ is a solution of (95), that is,

φ is solution of the Euler-Lagrange equations (89).

Again, we can look for Ehresmann connections in the fibration J1π∗ → M . Indeed, if h̃

is the horizontal projector of such a connection, we deduce that

ıh̃ΩH = (n − 1)ΩH

if and only if
∧A

i
= −

∂H

∂pi
A

,
∑

i

∧A

ii
=
∂H

∂yA
,

where

h̃ = dxi ⊗ [
∂

∂xi
+

∧A

i

∂

∂yA
+

∧A

ji

∂

∂pj
A

]

Therefore, if h̃ is flat, and γ is an integral section of h̃, we deduce that γ satisfies the Hamilton

equations for H .
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8.4 Polysymplectic formalism

An alternative formalism for Classical Field Theories is the so-called polysymplectic approach

(see [63, 64, 65, 66, 67, 68, 70, 71, 72, 73]). The geometric ingredients are almost the same as

in multisimplectic theory, except that we consider vector-valued Cartan-Hamilton-Poincaré

forms.

We start with a fibred bundle π : E → M as above, and introduce the following spaces

• The Legendre bundle

Π =
n

∧

M ⊗E V ∗π ⊗E TM

where V ∗π is the dual vector bundle of the vertical bundle V π.

• The homogeneus Legendre bundle

ZE = T ∗E ∧ (
n−1
∧

M) .

ZE (resp. Π) will play the role of
∧m

2 E (resp. J1π∗) in multisymplectic formalism. Accord-

ingly, we introduce coordinates (xi, yA, p, pi
A) on ZE, and (xi, yA, pi

A) on Π. Moreover, there

exists a canonical embedding θ : Π →
∧n+1 E

⊗

E TM defined by θ = −pi
A dyA ∧ ω ⊗ ∂

∂xi .

Definition 8.4 The polysymplectic form on Π is the unique TM-valued (n+2)-form Ω such

that the relation

ıφΩ = −d(φ θ)

holds for any 1-form φ on M .

A direct computation shows that Ω has the following local expression

Ω = dpi
A ∧ dyA ∧ ω ⊗

∂

∂xi
.

A covariant Hamiltonian is given by a Hamiltonian form, that is, a section H of the canonical

projection ZE → Π, as in the multisymplectic settings. The field equations are provided by

a connection γ in the fibration Π → M such that γ Ω is closed, and γ is then called a

Hamilton connection (see [64] for details).
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The Cartan-Hamilton-Poincaré m-form ΘL defines the Legendre transformation

FL : J1π −→ ZE

by

FL(xi, yA, yA
i ) = (xi, yA,L− yA

i

∂L

∂yA
i

,
∂L

∂yA
i

) .

On the other hand, notice that ZE is canonically embedded into
∧n M , so that it inherits

the restriction ΞE of the canonical multisymplectic form ΩE , say

ΞE = ΩE'ZE
.

Let ZL = FL(J1π) and assume that it is embedded into ZE. Therefore we have an

n-form ΞL on ZL which is just the restriction of ΞE . Of course we have

ΘL = FL∗(ΞL) .

The Legendre morphism FL permits then to transport sections from the fibration J1π → M

to ZL → M , and conversely:

J1π ZL

M

FL !

"
"

"
"

""#
$

$
$

$
$$%

s

"
"

"
"

""&

$
$

$
$

$$%

s̄

such that, if s is a solution of the equation s∗(X dΘL) = 0 for all vector fields on J1π,

then FL◦ s is a solution of the equation γ∗(X̄ dΞL) = 0, for all vector fieds X̄ on ZL, and

conversely (see [64] ).

In [64] is also analyzed the case of singular Lagrangians in order to compare the Hamil-

tonian and Lagrangian formalism.

9 n-symplectic geometry

n-symplectic geometry on frames bundles was originally developed as a generalization of

Hamiltonian mechanics. The theory has, however, turned out to be a covering theory of

both symplectic and multisymplectic geometries in the sense that these latter structures
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can be derived from n-symplectic structures on appropriate frames bundles [11, 28]. In this

section we compare the n-symplectic geometry to k-symplectic/polysymplectic geometry and

to multisymplectic geometry as well. Moveover we present a recent extension of the algebraic

structures on an n-symplectic manifold to a general n-symplectic manifold.

9.1 The structure equations of n-symplectic geometry

The difference between n-symplectic and k-symplectic/polysymplectic geometry lies not in

the properties of the canonical 2-form – they are essentially the same. Instead the real

difference lies in the structure equations, the specification of LM , and the algebraic structures

based on the m-symplectic Poisson bracket.

In n-symplectic geometry, one works with the soldering form on the frame bundle LM .

The differential of the soldering form is a family of 2-forms that, together with the right

grouping of the fundamental vertical vector fields, makes LM a m-symplectic manifold.

However in n-symplectic geometry we prefer to think of dθ as a vector valued 2-form – as a

single unit rather than a collection.

Recall the structure equation of m-symplectic geometry for first order observables:

df̂ i = −Xf̂ dθi (97)

So we have vector-valued observables (f̂ i) and scalar-valued vector fields (Xf̂), whereas the

polysymplectic formalism has scalar observables and vector-valued vector fields.

In the polysymplectic formalism there exist corresponding vector fields for all functions,

but these vector fields are not unique. Contrastingly, in the first order m-symplectic formal-

ism the vector fields are unique, but only exist for a special class of functions (see Section

9.4). This uniqueness allows for the definition of Poisson brackets, which are not available

in the polysymplectic formalism.

The m-symplectic formalism extends to allow higher order observables. For example, in

the second order symmetric case we have:

df̂ ij = −2Xf̂

(i
dθ

j)
(98)

Now we obtain vector-valued vector fields from an Rn ⊗s Rn-valued function. In fact, we

remark that the trace
∑

i=j f ij will satisfy the polysymplectic equation with the vector field
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−2X i
f̂
. In this second order case the vector fields are no longer unique, but this does not

impede the definition of Poisson brackets.

For the p-th order case in m-symplectic geometry we have

df̂ i1...ip = −p!Xf̂

(i1...ip−1
dθ

ip)
or df̂ i1...ip = −p!Xf̂

[i1...ip−1
dθ

ip]
(99)

for the symmetric and anti-symmetric cases respectively. The Poisson bracket of a p-th and

a q-th order observable is a (p + q − 1)-th order observable. The full algebra is developed in

[9]. There is nothing in the polysymplectic formalism to compare to this in general.

It has been shown recently that the n-symplectic Poisson brackets defined on frame

bundles extends to Poisson brackets on a general polysymplectic manifold. We present in

the next sections a summary of the general results shown by Norris [32] for a general n-

symplectic (polysymplectic) manifold.

9.2 General n-symplectic geometry

Let P be an N -dimensional manifold, and let (r̂α) denote the standard basis of Rn, with

1 ≤ n ≤ N . We suppose there exists on P a general n-symplectic structure, namely an

Rn-valued 2-form ω̂ = ωα ⊗ r̂α that satisfies the following two conditions:

(C − 1) dωα = 0 ∀ α = 1, 2, . . . , n (100)

(C − 2) X ω̂ = 0 ⇔ X = 0 (101)

Definition 9.1 The pair (P, ω̂) is a general n-symplectic manifold.

Remark In references [9, 10, 11, 12, 74, 28, 48] the term n-symplectic structure refers to the

two-form that is the exterior derivative of the Rn-valued soldering 1-form on frame bundles

or subbundles of frame bundles. As outlined earlier in this paper Günther [4] was perhaps

the first to consider a manifold with a non-degenerate Rn-valued 2-form, and he used the

terms polysymplectic structure and polysymplectic manifold for the non-dengenerate 2-form

and manifold, respectively. In addition, when one adds two extra conditions to conditions
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C-1 and C-2 one arrives at a k-symplectic manifold. Specifically, if P is required to support

an np-dimensional distribution V such that

(C − 3) N = p(n + 1)

(C − 4) ω̂|V ×V = 0

then P is a k-symplectic manifold as defined by both de Leon, Salgado, et al. [5] and also by

Awane [7]. To make this identification one needs to make the notational changes n −→ k and

p −→ n in the above discussion. Thus all k-symplectic manifolds are n-symplectic, but not

conversely. The example (LE, dθ̂) of an m-symplectic manifold introduced in Section 4.4 is

also a k-symplectic manifold. On the other hand the important example of the adapted frame

bundle LπE is m-symplectic, but not k-symplectic. The problem is that the k-symplectic

dimensional requirement N = p(m + 1) cannot be satisifed on LπE.

We will use the name general m-symplectic structure for the structure in definition 9.2

in order to emphasis the geometrical and algebraic developments that the m-symplectic

approach provides. Howewer, the definition of a general m-symplectic structure is identical

with the definition of a polysymplectic structure.

9.3 Canonical coordinates

Awane [7] has proved a generalized Darboux theorem for k-symplectic geometry. Thus in the

neighborhood of each point u ∈ P one can find canonical (or Darboux) coordinates (παa , zb),

α, β = 1, 2, . . . k and a, b = 1, 2, . . . n. With respect to such canonical coordinates ω̂ takes

the form

ω̂ = (dπαa ∧ dza) ⊗ r̂α (102)

Hence we have the following locally defined equations:

dπαa = −
∂

∂za
ωα , dza =

∂

∂παa
ωα , (Σα/ ) (103)

Remark The n-symplectic approach used to characterize algebras of observables requires

the existence of such canonical coordinates. From the results in [9] one knows that not
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all functions are allowable n-symplectic observables, even in the canonical case of frame

bundles. Thus, for example, whether or not there exist pairs (f̂α1α2...αp , X
α1α2...αp−1

f̂
), p =

1, 2, . . . that satisfy equation (105) below for a general m-symplectic manifold is an existence

question. The formulas (103) will provide local examples of rank 1 solutions of the n-

symplectic structure equations (105) when either the geometry is specialized to (k = n)-

symplectic geometry where a Darboux theorem holds, or when canonical coordinates are

simply known to exist. Fortunately in the case of the adapted frame bundle LπE, canonical

coordinates are known to exist.

Example: On the bundle of linear frames λ : LE → E one can introduce canonical coordi-

nates in the (zα, παβ ) as in ection 2.5. With respect to such a coordinate system on LE the

soldering 1-form θ̂ has the local coordinate expression

θ̂ = (παβdzβ) ⊗ r̂α (104)

The m-symplectic 2-form dθ̂ clearly has the canonical form (102) in such a coordinate system.

9.4 The Symmetric Poisson Algebra Defined by ω̂

In this section we generalize the algebraic structures of n-symplectic geometry on frame

bundles to a general n–symplectic manifold. Throughout this section we let (P, ω̂) be a

general n-symplectic manifold as defined above. It is convenient to introduce the multi-

index notation

r̂α1α2...αn−µ = r̂α1 ⊗s r̂α2 ⊗s · · ·⊗s r̂αn−µ , 0 ≤ µ ≤ n − 1

In addition round brackets around indices (αβγ) denote symmetrization over the enclosed

indices.

Definition 9.2 For each p ≥ 1 let SHF p denote the set of all (⊗s)pRn-valued functions

f̂ = (f̂α1α2...αp) = (f̂ (α1α2...αp)) on P that satisfy the equations

df̂α1α2...αp = −p!X
(α1α2...αp−1

f̂
ωαp) (105)
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for some set of vector fields (X
α1α2...αp−1

f̂
). We then set

SHF = ⊕p≥1SHF p (106)

f̂ ∈ SHF p is a symmetric Hamiltonian function of rank p.

Example: The locally defined functions f̂ that satisfy (105) for the canonical m-symplectic

manifold (LE, dθ̂) were given in reference [9]. In particular, contrary to the situation in

symplectic geometry, not all (⊗s)pRm-valued functions on LE are compatible with equation

(105). The p = 1, 2 cases will clarify the structure. Let ST p(LE) denote the vector space

of symmetric (⊗s)pRm-valued GL(m)-tensorial functions on LE that correspond uniquely to

symmetric rank p contravariant tensor fields on E. Similarly let C∞(E, (⊗s)pRm) denote the

set of smooth (⊗s)pRm-valued functions on LE that are constant on fibers of LE. Then

SHF 1 = ST 1(LE) + C∞(E, Rm) (107)

SHF 2 = ST 2(LE) + T 1(LE) ⊗s C∞(E, Rm) + C∞(E, Rm ⊗s R
m) (108)

For example, if f̂ = (f̂α) ∈ SHF 1 and f̂ = (f̂αβ) ∈ SHF 2, then in canonical coordinates

(παβ , zγ) the functions f̂α and f̂αβ have the general forms

f̂α = Aaπαa + Bα , f̂αβ = Aµνπαµπ
β
ν + Bµ(απβ)

µ + Cαβ (109)

where Aa, Bα, Aµν = A(µν), Bµν and Cµν = C(µν) are all constant on the fibers of λ : LE → E

and hence are pull-ups of functions defined on E.

The analogous results for the general n-symplectic form given in (102) above are straight

forward to work out in canonical coordinates. For the p = 1 and p = 2 symmetric cases, one

finds:

f̂α = Aaπαa + Bα , f̂αβ = Aabπαaπ
β
b + Ba(απβ)

a + Cαβ (110)

where now all coefficients are functions of the coordinates za.

Although ω̂ is non-degenerate in the sense given in equation (101) above, because of the

symmetrization on the right-hand-side in (105) the relationship between f̂ and (X
α1α2...αp−1

f̂
)
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is not unique unless p = 1. Given a pair (f̂α1α2...αp , X
α1α2...αp−1

f̂
) that satisfies (105) one can

always add to X
α1α2...αp−1

f̂
vector fields Y α1α2...αp−1 that satisfy the kernel equation

Y (α1α2...αp−1 ω̂αp) = 0 (111)

to obtain a new pair (f̂α1α2...αp , X̄
α1α2...αp−1

f̂
) that also satisfies (105), where

X̄
α1α2...αp−1

f̂
= X

α1α2...αp−1

f̂
+ Y α1α2...αp−1

Hence we associate with f̂ ∈ SHF p an equivalence class of (⊗s)p−1Rn-valued vector fields,

which we denote by [[X̂f̂ ]] = [[X
α1α2...αp−1

f̂
r̂α1α2...αp−1 ]]. We will see below that even though we

obtain equivalence classes of Hamiltonian vector fields rather than vector fields, the geometry

still carries natural algebraic structures.

Definition 9.3 For each p ≥ 1 let SHV p denote the vector space of all equivalence classes of

(⊗s)p−1Rn-valued vector fields [[X̂f̂ ]] = [[X
α1α2...αp−1

f̂
r̂α1α2...αp−1 ]] on P that satisfy the equations

(105) for some f̂ = f̂α1α2...αp r̂α1α2...αp ∈ SHF p. We then set

SHV = ⊕p≥1SHV p (112)

[[X̂f̂ ]] will be referred to as the generalized rank p Hamiltonian vector field defined by f̂ .

Example: The Hamiltonian vector field Xf̂ for the rank 1 element in (109) is unique, and

has the form

Xf̂ = Aα ∂

∂zα
− (
∂Aβ

∂zγ
παβ +

∂Bα

∂zγ
)
∂

∂παγ
(113)

The equivalence class of Rm-valued Hamiltonian vector fields corresponding to the rank 2

element in (109) on LE has representatives of the form

Xf̂
α = (Aµνπαµ + Bνα)

∂

∂zν
−

1

2

(

∂Aµβ

∂zγ
παµπ

ν
β +

∂Bµ(α

∂zγ
πν)

µ +
∂Cαν

∂zγ

)

∂

∂πνγ
+ Y αν

γ

∂

∂πνγ
(114)

where Y αβ
γ are functions subject to the constraint

Y (αβ)
γ = 0

but are otherwise completely arbitrary. The fact that Y α = Y αµ
ν

∂
∂πµ

ν
is purely vertical on

λ : LE → E follows from (111).
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For the n-symplectic rank 2 symmetric observable given above in (110), one can check

easily that the local coordinate form of a representative Xα
f̂

of the equivalence class of

Hamiltonian vector fields [[X̂f̂ ]]
α

that satisfies (105) has the form

Xα = (Aabπαa + Bbα)
∂

∂zb
−

1

2

(

∂Aab

∂zd
παaπ

σ
b +

∂Ba(α

∂zd
πσ)

a +
∂Cασ

∂zd

)

∂

∂πσd
+ Y α (115)

9.4.1 Poisson Brackets

We show that the n-symmetric Poisson brackets defined on frame bundles can also be defined

in a general n-symplectic manifold.

Definition 9.4 For p, q ≥ 1 define a map { , } : SHF p × SHF q → SHF p+q−1 as follows.

For f̂ = fα1α2...αp r̂α1α2...αp ∈ SHF p and ĝ = gβ1β2...βq r̂β1β2...βq ∈ SHF q

{f̂ , ĝ}α1α2...αp+q−1 := p!X
(α1α2...αp−1

f̂

(

ĝαpαp+1...αp+q−1)
)

(116)

where Xf̂
α1α2...αp−1 is any set of representatives of the equivalence class [[X̂f̂ ]].

We need to make certain that {f̂ , ĝ} is well-defined. Suppose we have two representatives

X
α1α2...αp−1

f̂
and X̄

α1α2...αp−1

f̂
= X

α1α2...αp−1

f̂
+ Y α1α2...αp−1 of [[X̂f̂ ]]. Then it follows easily from

(111) that

X̄
(α1α2...αp−1

f̂

(

ĝαpαp+1...αp+q−1)
)

= Xf̂
(α1α2...αp−1

(

ĝαpαp+1...αp+q−1)
)

Hence the bracket is independent of choice of representatives. That {f̂ , ĝ} actually is in

SHF p+q−1 will follow from Corollary (9.7) below.

Definition 9.5 Let [[X̂f̂ ]] = [[X
α1α2...αp−1

f̂
r̂α1α2...αp−1 ]] and [[X̂ĝ]] = [[X

α1α2...αp−1

ĝ r̂α1α2...αp−1 ]] de-

note the equivalence classes of vector-valued vector fields determined by f̂ ∈ SHF p and

ĝ ∈ SHF q, respectively. Define a bracket [[ , ]] : SHV p × SHV q → SHV p+q−1 by

[[[[X̂f̂ ]], [[X̂ĝ]]]] = [[[Xf̂
(α1α2...αp−1 , Xĝ

αpαp+1...αp+q−2)]r̂α1α2...αp+q−2 ]] (117)

where the ”inside” bracket on the right-hand side is the ordinary Lie bracket of vector fields

calculated using arbitrary representatives. (Notice the symmetrization over all the upper

indices in this equation.)
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We again need to show that this bracket is well-defined. This is shown in the following

lemma, in which we will need the formula

LX(Jωα) = 0 (118)

which follows easily from (105) and the formula LXω = X dω+d(X ω). In (118) J de-

notes the multiindex α1α2 . . .αp−1, and XJ denotes a representative of a rank p Hamiltonian

vector field satisfying equations (105). The next lemma shows that the bracket defined in

(117) is (i) independent of choice of representatives, and (ii) closes on the set of equivalence

classes of vector-valued Hamiltonian vector fields. The proof of the lemma can be found in

[32], which is quite similar to the proof of the analogous result in symplectic geometry.

Lemma 9.6 Let [[X̂f̂ ]] and [[X̂ĝ]] denote the equivalence classes of vector-valued vector fields

determined by f̂ ∈ SHF p and ĝ ∈ SHF q, respectively. Then

[[[[X̂f̂ ]], [[X̂ĝ]]]] =
(p + q − 1)!

p! q!
[[X̂ ˆ{f̂ ,ĝ}

]] (119)

Corollary 9.7

{f̂ , ĝ} ∈ SHF p+q−1

Theorem 9.8 (SHV, [[ , ]]) is a Lie Algebra.

Proof The bracket defined in (117) is clearly anti-symmetric. To check the Jacobi identity

we note that we only need check it for arbitrary representatives, and we may use the very

definition (117) for the calculation. Since the ”inside” bracket on the right-hand-side in

(117) is the ordinary Lie bracket for vector fields, we see that the bracket defined in (117)

also must obey the identiy of Jacobi.

We can now show that SHF is a Poisson algebra under the bracket defined in (116).

Theorem 9.9 (SHF, { , }) is a Poisson algebra over the commutative algebra (SHF,⊗s).
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Proof The symmetrized tensor product ⊗s makes SHF into a commutative algebra. If we

now consider again elements f̂ ∈ SHF p, ĝ ∈ SHF q and ĥ ∈ SHF r, then by using definition

(116) one may show that

{f̂ , ĝ ⊗s ĥ} = {f̂ , ĝ}⊗s ĥ + ĝ ⊗s {f̂ , ĥ} . (120)

Thus the bracket defined in (116) acts as a derivation on the commutative algebra.

Example: In the canonical case P = LE the Poisson brackets just defined have a well-known

interpretation. As mentioned above the homogeneous elements in SHF p make up the space

ST p(LE), the symmetric rank p GL(m)-tensorial functions that correspond to symmetric

rank p contravariant tensor fields on E. Then ST = ⊕p≥1ST p ⊂ SHF , and the bracket

{ , } : ST p × ST q → ST p+q−1 has been shown [12] to be the frame bundle version of the

Schouten-Nijenhuis bracket of the corresponding symmetric tensor fields on E.

There is also a Schouten-Nijenhuis bracket for anti-symmetric contravariant tensor fields

on E, and as one might expect this bracket also extends to LE. This leads to a graded

m-symplectic Poisson algebra of anti-symmetric tensor-valued functions on LE [11].

9.5 The Legendre Transformation in m-symplectic theory on LπE

One can define the CHP 1-forms, defined above in Definition 7.9, using a frame bundle

version of the Legendre transformation. Given a lifted Lagrangian L : LπE → R we obtain

a mapping φL : LπE → LE given by

φL(u) = φL(e, ei, eA) =

(

e,
1

τ L(u)
ei, eA −

1

τ L(u)
E∗a

A (L)(u)ea

)

(121)

The condition that this mapping end up in LE is that the Lagrangian be non-zero, and

for the rest of this paper we will assume this condition. We refer to this mapping as the

m-symplectic Legendre transformation. Our goal is to prove Theorem (9.13), namely that

θ̂L = φ∗L(θ̂) where θ̂ is the canonical soldering 1-form on the image QL of φL.

To clarify the meaning of the Legendre transformation (121) we introduce a new manifold

P̃ as follows. Let J denote the subgroup of GL(n) consisting of matrices of the form
(

I ξ
0 I

)

ξ ∈ R
n×k
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Define P̃ by

P̃ = LπE · J = {(ei, eA + ξj
Aej) | (ei, eA) ∈ LπE , ξ ∈ R

n×k} (122)

We collect together the pertinent results that are proved in [48, 32] and that lead up to

Theorem (9.13)

Lemma 9.10 P̃ is a open dense submanifold of the bundle of frames LE of E.

Lemma 9.11 There is a canonical diffeomorphism from P̃ to the product manifold LπE ×

Rm×k.

Using this fact one can the prove the following lemma. We let QL denote the range of

the Legendre transformation.

Lemma 9.12 If the Lagrangian L is non-zero, then the Legendre transformation φL : LπE →

QL is a diffeomorphism.

These facts taken together lead to the following fundamental theorem:

Theorem 9.13 Let L be the pull-up to LπE of a non-zero Lagrangian on J1π, and let φL

denote the m-symplectic Legendre transformation defined above in (121). Then

θ̂L = φ∗L(θ̂) (123)

Proof The proof is a direct calculation using the definition (121).

Remark This theorem has an obvious analogue in symplectic mechanics, where the sym-

plectic form on the velocity phase space TE is, for a regular Lagrangian, the pull back under

the Legendre transformation of the canonical 1-form on T ∗M . There is also a similar theo-

rem in multisymplectic geometry where the CHP m-form on J1π is known [34] to be the pull

back of the canonical multisymplectic m-form on J1∗π.

Now QL, being a submanifold of LE, supports the restriction θ̂|QL of the Rm-valued

soldering 1-form θ̂. It is easy to verify that the closed Rm-valued 2-form dθ̂|QL is also non-

degenerate, and hence (QL, d(θ̂|QL)) is an m-symplectic manifold. Using the fact that QL and
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LπE are diffeomorphic under the Legendre transformation, we obtain the following corollary

to Theorem 9.13.

Corollary 9.14 (LπE, dθ̂L) is an m-symplectic manifold.

To find the allowable observables of this theory one can set up [32] the equations of m-

symplectic reduction to find the subset of m-symplectic observables on LE that reduce to

the submanifold QL.

9.6 The Hamilton-Jacobi and Euler-Lagrange equations in m-symplectic

theory on LπE

Working out the local coordinate form of the CHP-1-forms, given in Definition 7.9, in La-

grangian coordinates one finds

θi
L = −H i

jdxj + P i
AdyA (124)

θA
L = P A

j dxj + P A
B dyB (125)

where

H i
j = ui

k(p
k
BuB

j − τ(n)Lδkj ) (126)

P i
B = ui

kp
k
B (127)

P A
j = −uA

BuB
j (128)

P A
B = uA

B (129)

The H i
j are the components of the covariant Hamiltonian, and the P i

B are the compo-

nents of the covariant canonical momentum [48]. Defining symbols hk
j by the formula

hk
j = pk

BuB
j − τ(n)Lδkj (130)

the covariant Hamiltonian (126) can be expressed as H i
j = ui

kh
k
j . Setting τ(n) = 1 one finds

that hi
j has the form of Carathéodory’s Hamiltonian tensor [44, 50]. Similarly, setting τ = 1

n

one finds that h = hi
i yields the Hamiltonian in the de Donder-Weyl theory [44, 49].
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9.6.1 The m-symplectic Hamilton-Jacobi Equation on LπE

The Carathéodory-Rund and de Donder-Weyl Hamilton-Jacobi equations occur as special

cases of a general Hamilton-Jacobi equation that can be set up on LπE. Proceeding by

analogy with the time independent Hamilton-Jacobi theory we seek Lagrangian submanifolds

of LπE. However, since the dimension of LπE is in general not twice the dimension of E,

a new definition is needed. For our purposes here we will consider m = n + k dimensional

submanifolds of LπE that arise as sections of λ. In particular we consider sections σ : E →

LπE that satisfy

σ∗(dθαL) = 0 (131)

These are the m-symplectic Hamilton-Jacobi equations [48].

Since σ∗(dθαL) = d (σ∗(θαL)) the condition (131) asserts that the 1-forms σ∗(θαL) are locally

exact, and we express this as

σ∗(θαL) = dSα (132)

in terms of m = n + k new functions Sα defined on open subsets of E. For convenience we

will denote objects on LπE pulled back to E using σ with an over-tilde. Thus, for example,

H̃ i
j = H i

j ◦ σ and P̃ i
A = P i

A ◦ σ. Then we get from (126)–(129) and (132)

(a) H̃ i
j = −

∂Si

∂xj
, (b) P̃ i

A =
∂Si

∂yA
(133)

(a) ũA
BũB

j = −
∂SA

∂xj
, (b) ũA

B =
∂SA

∂yB
(134)

Recalling that H i
j = P i

BuB
j − τ(n)Lui

j and P i
A are functions of the coordinates xi, yA, ui

j and

uA
i , equations (133) can be combined into the single equation

H i
j(x

a, yB, ua
b , u

B
a ,
∂Si

∂yB
) ◦ σ = −

∂Si

∂xj
(135)

Similarly combining equations (134) we obtain

dSA

dxj
= 0

We next consider special cases of these m-symplectic Hamilton-Jacobi equations.
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9.6.2 The Theory of Carathéodory and Rund

We note from (126), (127), and (130) that H i
j = ui

kh
k
j and P i

A = ui
kp

k
A, where the matrix

of functions (ui
j) is GL(n)-valued. Using the notation P i

j = −H i
j and ũi

j = ui
j ◦ σ we may

rewrite (126) and (127) in the form

P̃ i
j = −ũi

kh̃
k
j , P̃ i

A = ũi
kp̃

k
A (136)

If we take t(n) = 1 then these equations are the equations defining the canonical momenta in

Rund’s canonical formalism for Carathéodory’s geodesic field theory (see equations (1.22),

page 389 in [44], with the obvious change in notation). In this situation equation (135)

can be identified with the Rund’s Hamilton-Jacobi equation for Carathéodory’s theory (see

equation (3.29) on page 240 in [44]). We recall [44] that one can derive the Euler-Lagrange

field equations from this Hamilton-Jacobi equation.

In (136) we have the result that the arbitrary non-singular matrix-valued functions (ũi
j)

that occur in Rund’s canonical formalism for Carathéodory’s theory have a geometrical

interpretation in the present setting. Specifically they correspond to the coordinates for linear

frames for M . These defining relations are derived from Rund’s transversality condition,

and we now show that this condition has the elegant reformulation as the kernel of (θi
L).

We will say that a vector X at e ∈ E is transverse to a solution surface through e that is

defined by a given Lagrangian L, if X = dλ(X̂), where X̂ ∈ Tu(LπE) satisfies X̂ θi
L = 0,

for some u ∈ λ−1(e). X̂ thus satisfies the equations

0 = −H i
jX

j + P i
AXA = ui

k

(

−hk
j X

j + pk
AXA

)

Xj = X̂(xj) , XA = X̂(yA)

from which we infer

0 = −hk
j X

j + pk
AXA (137)

This is Rund’s transversality condition for the theory of Carathéodory when we take τ(n) = 1

(see equation (1.10), page 388 in [44]). The canonical momenta P i
j and P i

A are defined by

Rund to be solutions of

0 = P i
jX

j + P i
AXA (138)
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when (Xj, XA) satisfy (137). Rund’s solutions of these equations are given in (136). Looking

at (136), (137) and (138) we see that the introduction of the ui
j in (136) amounts to the

introduction of the GL(n) freedom for linear frames for M .

9.6.3 de Donder-Weyl Theory

Returning to (135) let us reduce this equation by making several assumptions. We suppose

that L is regular (in the usual sense on J1π), that the section σ is such that ũi
j = δij, and we

make the choice τ(n) = 1
n
. Now summing i = j in (135) we obtain

h̃(xi, yB,
∂Si

∂yB
) = −

∂Si

∂xi

where h̃ = p̃i
AũA

i − L̃. This equation is the Hamilton-Jacobi equation of the de Donder-Weyl

theory, as presented by Rund (see equation (2.31) on page 224 in [44]). We recall [44] that

one can derive in this case also the Euler-Lagrange field equations from the de Donder-Weyl

Hamilton-Jacobi equation.

9.7 Hamilton Equations in m-symplectic geometry

The structure of equations (124) - (127) suggests that one should be able to derive generalized

Hamilton equations if the canonical momenta pi
A = ∂L

∂uA
i

can be introduced as part of a local

coordinate system on LπE. Part of the original philosophy used in developing m-symplectic

geometry in reference [9] was to switch from scalar equations to tensor equations, motivated

by the fact that the soldering 1-form is vector-valued. In particular, the basic structure

equation (97) in m-symplectic geometry is tensor-valued. We show next that

u∗(η dθi
L) = 0 (139)

where u : M → LπE is a section of π ◦λ, and η is any vector field on LπE, yields generalized

canonical equations that contain known canonical equations as special cases. We consider

here only dθi
L since by Proposition (7.10) it alone is needed to construct the CHP-m-form

on J1π.

We need the following definition in order to introduce the canonical momenta as part of

a coordinate system on LπE.
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Definition 9.15 A Lagrangian L on LπE is regular if the (n + k) × (n + k) matrix

(

E∗i
A ◦ E∗j

B (L)
)

is non-singular.

Working out the terms of this matrix in Lagrangian coordinates using (20) we obtain

E∗i
A ◦ E∗j

B (L) = uj
au

i
bv

E
BvD

A

(

∂2L

∂uE
a ∂u

D
b

)

It is clear that this definition is equivalent to the standard definition of regularity on J1π.

We now consider the transformation of coordinates from the set (xi, yA, ui
j, u

A
k , uA

B) to the

new set (x̄i, ȳA, ūi
j, p

j
A, ūA

B) where

x̄i = xi , ȳA = yA , ūi
j = ui

j , ūA
B = uA

B , pi
A =

∂L

∂uA
i

Computing the Jacobian one finds that the new barred functions will be a proper coordinate

system whenever the Lagrangian is regular. For the remainder of this section we shall assume

that L has this property, despite the fact that many important examples (see [34, 35])

have non-regular Lagrangians. Moreover, for simplicity we will drop the bars on the new

coordinates.

In the generalized canonical equation (139) we now take η = ∂
∂pi

A
. We find the result

0 =

(

∂Hj
k

∂pi
A

◦ u

)

+ (uj
i ◦ u)

(

∂(yA ◦ u)

∂xk

)

Using Hj
k = uj

ih
i
k and the fact that (ui

j) is a non-singular matrix valued function, this last

equation reduces to

∂hj
k

∂pi
A

◦ u =
∂(yA ◦ u)

∂xk
δji

This is our first set of m-symplectic Hamilton equations. Notice that by summing j = k

in this equation we obtain

∂h

∂pi
A

◦ u =
∂(yA ◦ u)

∂xi
(140)
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Upon setting τ(n) = 1
n

we obtain half of the de Donder-Weyl canonical equations. Under

suitable but complicated conditions these equations, with τ(n) = 1, will also reproduce part

of Rund’s canonical equations for the theory of Carathéodory.

In the generalized canonical equation (139) we now take η = ∂
∂yA . We find

0 = u∗

(

d(ui
kp

k
A) + ui

k

∂hk
j

∂yA
dxj

)

Using an “over bar” notation to denote objects pulled back to M by u we may write this as

∂

∂xj

(

ūi
kp̄

k
A

)

= −ūi
k

(

∂hk
j

∂yA

)

◦ u (141)

This is our second set of m-symplectic Hamilton equations.

Notice that what is non-standard in (141) is the appearance of the derivatives of the

functions ūi
j = ui

j ◦ u. If, however, the section u : M → LπE is such that the ūi
j are

constants, then these equations reduce to

∂(p̄k
A)

∂xj
= −

∂hk
j

∂yA
◦ u

Setting τ(n) = 1
n

and summing k = j in this equation we obtain

∂(p̄i
A)

∂xi
= −

∂h

∂yA
◦ u

These equations, together with equations (140) when τ(n) = 1
n
, are the complete canonical

equations in the de Donder-Weyl theory.
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[53] P.L. Garćıa, A. Pérez-Rendón: Symplectic approach to the theory of quantized fields,

I. Comm. Math. Phys. 13 (1969) 24-44.
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