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Abstract. We present preliminary results for a prequantization procedure that leads
in a natural way to the Dirac equation. The starting point is the recently introduced
n-symplectic geometry on the bundle of linear frames LM of an n-dimensional manifold
M in which the Rn-valued soldering 1-form θ on LM plays the role of the n-symplectic
potential. On a 4-dimensional spacetime manifold we consider the tensorial R4⊗R4-valued
function ĝ on LM determined by the spacetime metric tensor ~g as the Hamiltonian for free
observers and determine the associated R4-valued Hamiltonian vector field X̂ĝ = Xi

ĝ ⊗ ri.
“Integration” of the Xi

ĝ yields the dynamics of free observers on spacetime, namely parallel
transport of linear frames along spacetime geodesics. In order to obtain a vector field on
the spin bundle SM which is a lift of X̂ĝ and which is induced by a vector field X̂g̃ for
an appropriate mapping g̃, it is useful to define a prolongation L̃oM of some bundle LoM
of oriented frames of M. If GL+(4,R) denotes the identity component of GL(4,R) then
GL+(4,R) is the structure group of LoM and its double cover ˜GL+(4,R) is the structure
group of L̃oM . We show that the lift θ̃ of θ on LoM to L̃oM induces a natural 4-symplectic
potential on L̃oM . If g̃ is the lift of ĝ to L̃oM then we find the R4-valued Hamiltonian vector
field X̂g̃ on L̃oM determined by g̃ and show that the vector fields Xi

g̃ on L̃oM are tangent
to the subbundle SM . “Integration” of the restriction of the Xi

ĝ to SM now yields parallel
transport of spin frames and thus tetrads along spacetime geodesics of ~g. We consider a
näive prequantization operator assignment X̂g̃ 7→ Pg̃ := ihγiX

i
g̃ acting on C4-spinors in the

standard representation of SL(2,C). The eigenvalue equation for the system of new Hilbert
space operators yields the Dirac equation.
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1 Introduction

The Kostant-Souriau theory of geometric quantization [5, 11] that has been developed over
the last 20 plus years takes symplectic geometry as the basic geometrical building block.
That is to say, to set up the fundamental structure of the theory one does not need to
assume a Riemannian metric tensor, a linear connection, or any other geometrical structure
beyond symplectic geometry. These additional structures are only needed once one wants
to work out the details of a specific model within the context of the general theory. Thus,
for example, the theory of the free relativistic point particle in a curved spacetime (M,~g)
follows from the general theory applied to the Hamiltonian H = g̃ thought of as the mass-
squared operator. Here g̃ is the R-valued function on T ∗M determined by the metric tensor
~g, and g̃ takes the quadratic form g̃ = gij(q)pipj in local coordinates (qi, pj) on T ∗M . In
the Schrödinger representation one finds [10] the Klein–Gordon equation as the eigenvalue
equation for the mass-squared operator. Thus the standard theory built on symplectic
geometry on T ∗M , the free particle Hamiltonian H = g̃ and the Schrödinger representation
leads to the Klein–Gordon equation rather than the Dirac equation. On the other hand, in
Souriau’s derivation of the Dirac equation [11] he assumes the existence of a representation
of Dirac 4-spinors and uses the symplectic structure on coadjoint orbits in the dual Poincaré
Lie algebra P (4)∗. The new derivation of the Dirac equation presented in this chapter will
follow from a different approach that is in a sense a mixture of these two approaches.

Our basic idea is to abandon standard symplectic geometry on T ∗M and work instead
with a generalized symplectic geometry on the bundle of linear frames LM . We shall also
assume the existence of 4-spinor representations. The bundle of linear frames LM of an
n-dimensional manifold M supports a natural structure, based on the Rn-valued soldering
one-form, that may be viewed as an “n-symplectic structure.” We refer to the resulting
geometry as “n-symplectic geometry”. The allowable observables associated with this new
geometry on LM contain the tensor-valued functions representing contravariant tensor fields
on M . The metric tensor is the Hamiltonian tensor for free observers, thus serving as
the analogue of the free particle Hamiltonian on T ∗M . For a four-dimensional spacetime
manifold M we determine by equation (3.1) the R4-valued Hamiltonian vector field, or four-
dimensional Hamiltonian distribution which corresponds to the metric tensor. The classical
dynamics associated with the Hamiltonian distribution is the parallel transport of frames
along geodesics in M . Note that in 4-symplectic geometry the free observer Hamiltonian
yields four Hamiltonian vector fields compared with the single Hamiltonian vector field
defined on T ∗M . The fact that we obtain four Hamiltonian vector fields clearly suggests
the possibility of constructing the Dirac operator via a geometric quantization approach.

To lift this Hamiltonian distribution to SM , the spin bundle over M , we must first
restrict it to OoM , a component of the orthonormal frame bundle (OM,~g), with group
the identity component of the Lorentz group [1, p. 81]. However, if we define ĝ to be
the R4 ⊗ R4-valued tensorial 0-form on LM determined by ~g, then ĝ OoM is constant,
corresponding to the view of OoM as a constant energy-momentum surface in LM . Hence
d(ĝ OoM) ≡ 0 and we cannot determine Hamiltonian vector fields. So in order to determine
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the Hamiltonian distribution X̂ĝ on OoM first we must work on LM , and then restrict to
OoM . Similarly in order to find a Hamiltonian distribution on SM we must find a way to
extend SM . It is the purpose of this chapter to demonstrate a technique which permits
us to do so and consequently to obtain a Hamiltonian distribution on SM describing free
observers. The resulting distribution then may be used to construct the Dirac equation.

Let LoM be a subbundle of LM with group GL+(4,R), the identity component of
GL(4,R). Consider the bundle prolongation of LoM to a ˜GL+(4,R) bundle, L̃oM . On
L̃oM we find the R4-valued Hamiltonian vector field X̂g̃ determined by the free particle
Hamiltonian tensor H = g̃, where g̃ is the lift of ĝ to L̃oM . Then we observe that “inte-
gration” of the system of vector fields yields SM as a subbundle of L̃oM with structure
subgroup SL(2,C). A Hermitian operator, the naive prequantization operator, is defined
on the restriction to SM of the Hamiltonian vector field on L̃oM . We may now assign
to this Hermitian operator a representation as an operator on L2(SM,C4), the space of
Dirac 4-spinors. As an end result we show that the Dirac equation arises as the eigenvalue
equation for this spinor representation of the naive prequantization operator determined by
the free particle Hamiltonian tensor H.

2 Survey of n-symplectic geometry on LM

Let M be an n-dimensional manifold and let LM be the principal fiber bundle of linear
frames of M . The dimension of LM is the even number n(n + 1). A point u ∈ LM will
be denoted by the pair (p, ei) where p ∈ M and (ei) ≡ (e1, e2, . . . , en) denotes a linear
frame at p. The projection map π : LM → M is defined by π(p, ei) = p. The structure
group of LM is the general linear group GL(n,R), which acts freely on the right of LM
by Rg(p, ei) ≡ (p, ei) · g = (p, ejg

j
i ) for g = (gi

j) ∈ GL(n,R). The summation convention on
repeated indices is employed throughout this chapter.

Local coordinates on LM may be defined as follows [8]. If (U, xi) is a chart on M ,
then define local coordinates (xi, πj

k) : π−1(U) → Rn × Rn2
by xi(p, ej) = xi(p) and

πj
k(p, ei) = ej( ∂

∂xk ). Here (ej) , j = 1, 2, . . . , n denotes the coframe dual to the linear frame
(ej). Note that we follow the standard practice of using xi to denote coordinates on both
U ⊂M and π−1(U) ⊂ LM .

The structure of LM is special in the sense that it supports a globally defined Rn-valued
one-form, the soldering one-form θ̂ = θiri. Here r1, r2, . . . , rn denotes the standard basis of
Rn. Each point u ∈ LM can be defined [4] as a linear isomorphism u : Rn → Tπ(u)M . In
local coordinates u can be defined by

u(ξiri) ≡ (p, ej)(ξiri) := ξiei , (2.1)

with inverse
u−1(X) ≡ (p, ei)−1(X) = ei(X)ri , X ∈ TpM . (2.2)

Then the soldering one-form θ may be defined by [4]

θ(Y )
def
= u−1(π∗Y ) , ∀ Y ∈ TuLM . (2.3)
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In local coordinates (xi, πj
k) the soldering one-form has the local expression

θiri = (πi
jdx

j)ri ≡ (πi
jri)dx

j . (2.4)

Compare this form to the expression ϑ = pjdx
j for the canonical one-form on T ∗M in

canonical coordinates. The difference is that the momentum coordinates pj on T ∗M are
R-valued while the π̂j := πi

jri on LM are Rn-valued.
Consider now the exact Rn-valued two-form dθ. By (2.4) it has the local coordinate

expression
dθ = dθiri = (dπi

j ∧ dxj)ri . (2.5)

Using equation (2.5), it is easy to show that dθ is nondegenerate in the sense that

X dθ = 0 ⇔ X = 0 . (2.6)

Thus dθ has the basic properties of a symplectic structure, although it is Rn-valued. This
motivates the following definition:

Definition Let P be a principal fiber bundle over a manifold M with group G. Let the
dimension of M be n. An n-symplectic structure on P is an Rn-valued two-form ω on
P that is closed and nondegenerate in the sense of equation (2.6). The pair (P, ω) is an
n-symplectic manifold.

The theory of n-symplectic geometry on (LM, dθ) [8] is based on generalizing the basic
structure equation

df = −Xf dϑ (2.7)

on T ∗M to (LM, dθ). In (2.7) f denotes any smooth R-valued function on T ∗M . Since
dθ is Rn-valued the range of the variables changes in n-symplectic geometry. The simplest
generalization of (2.7) is

df̂ = −Xf̂ dθ (2.8)

where now f̂ is a smooth Rn-valued function on LM . Since dθ is nondegenerate if a vector
field Xf̂ satisfies (2.8) for a given Rn-valued function f̂ , then it will be unique. On the
other hand, the soldering one-form θ transforms tensorially under right translations Rg for
g ∈ GL(n) according to R∗gθ = g−1 · θ. A consequence of this tensorial nature of θ is that
not every Rn-valued function on LM is compatible with equation (2.8). On the other hand
all smooth R-valued functions on T ∗M are compatible with equation (2.7).

Let T 1 denote the set of Rn-valued functions f̂ on LM that transform tensorially under
right translation by R∗gf̂ = g−1 ·f̂ . Such functions are in one–one correspondence with vector
fields on M . Denote by HF 1 the set of Rn-valued functions on LM that are compatible
with (2.8). Norris [8] shows that

HF 1 = T 1 ⊕ C∞(M,Rn) (2.9)
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where the second factor denotes the smooth Rn-valued functions on LM that are invariant
on fibers. For each f̂ ∈ HF 1 equation (2.8) assigns a unique Hamiltonian vector field Xf̂ .

The Poisson bracket of f̂ , ĝ ∈ HF 1 is defined by

{f̂ , ĝ} = Xf̂ (ĝ) (2.10)

and HF 1 is a Lie algebra under this bracket. Denote by HV 1 the set of Hamiltonian vector
fields Xf̂ determined by elements of HF 1. Then one shows that

[Xf̂ , Xĝ] = X{f̂ ,ĝ} (2.11)

so that HV 1 forms a Lie algebra.
¿From (2.8) it is clear that the constant Rn-valued functions in C∞(M,Rn) ⊂ HF 1 are

all mapped to the zero vector field. Identifying these constant functions with Rn, we have
that as Lie algebras

HV 1 = HF 1/Rn . (2.12)

Strictly speaking, the bracket defined in (2.10) is not a Poisson bracket but simply a
Lie bracket since it is not a Lie derivation. However, the bracket becomes a true Poisson
bracket when HF 1 is combined with the higher rank symmetric T pRn-valued observables.
Let

ST p = {f̂ : LM → ⊗p
sR

n|f̂(u · h) = h−1 · f̂(u) ∀ h ∈ GL(n)}

denote the vector space of functions on LM which have their values in the vector space
⊗p

sR
n, where ⊗s denotes the symmetric tensor product. Let SX p denote the vector space

of symmetric rank p contravariant tensor fields on M and observe that each element of
ST p corresponds to a unique element of SX p. We denote by ST =

∑∞
p=1 ST

p the infinite
dimensional vector space which is the direct sum of the vector spaces ST p.

An element f̂ ∈ ST p determines [8] an equivalence class [[Xf̂ ]] of (n+p−2
p−1 ) vector fields

[[Xf̂ ]]i1...ip−1 via the n-symplectic structure equation

df̂ i1...ip = −p!X(i1...ip−1

f̂
dθip) (2.13)

where round brackets on indices denotes symmetrization. We note that although dθ is non-
degenerate in the sense of (2.6), because of the symmetrization in (2.13) the nondegeneracy
is lost. For a given f̂ ∈ ST p equation (2.13) only determines the vector fields Xi1...ip−1

f̂
up

to addition of vector fields Y i1...ip−1 satisfying the kernel equation

Y (i1...ip−1 dθip) = 0 . (2.14)

If a set of vector fields Y i1...ip−1 satisfies (2.14), then each vector field Y i1...ip−1 must be
vertical. For a given f̂ ∈ ST p equation (2.13) thus determines an equivalence class of
T pRn-valued Hamiltonian vector fields ([[Xf̂ ]]i1...ip−1), where two T pRn-valued vector fields
are equivalent if their difference satisfies equation (2.14).
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An element
f̂ = f̂ i1i2...ipri1 ⊗s ri2 ⊗s · · · ⊗s rip ∈ ST p

has the local canonical coordinate representation

f̂ i1i2...ip = f j1j2...jp(x)πi1
j1
πi2

j2
· · ·πip

jp
. (2.15)

The associated equivalence classes of Hamiltonian vector fields [[Xf̂ ]]i1i2...ip−1 determined by
equation (2.13) have the local coordinate representations

Xf̂
i1i2...ip−1 =

1
(p− 1)!

f j1j2...jp−1kπi1
j1
πi2

j2
· · ·πip−1

jp−1

∂

∂xk
(2.16)

− 1
p!

(
∂f j1j2...jp

∂xa
πi1

j1
πi2

j2
· · ·πip−1

jp−1
πb

jp
+ T

i1i2...ip−1b
a

)
∂

∂πb
a

where the components T i1i2...ip−1b
a must satisfy

T
(i1i2...ip−1b)
a = 0 (2.17)

but are otherwise arbitrary.
The fact that one obtains equivalence classes of vector fields rather than vector fields

for the higher rank observables does not interfere with the basic algebraic structures in n-
symplectic geometry. For each p ≥ 1 the set of equivalence classes of ⊗p−1

s Rn-valued vector
fields on LM , with equivalence defined as above, forms an infinite-dimensional vector space.
Denote by HV (ST p) the vector space of ⊗p−1

s Rn-valued equivalence classes of vector fields
determined by elements of ST p by equation (2.13). For f̂ ∈ ST p and ĝ ∈ ST q define the
Poisson bracket { , } : ST p × ST q → ST p+q−1 by

{f̂ , ĝ}i1i2...ip+q−1 = p!Xf̂
(i1i2...ip−1

(
ĝipip+1...ip+q−1)

)
(2.18)

where Xf̂
i1i2...ip−1 is any representative of the equivalence class [[Xf̂ ]]i1i2...ip−1 . The bracket

so defined is easily shown to be independent of the choice of representatives and has all the
properties of a Poisson bracket. In fact when the bracket defined here is reexpressed on the
base manifold M , it gives [8] the differential concomitant of Schouten [9] and Nijenhuis [7]
of the symmetric tensor fields corresponding to f̂ and ĝ.

Theorem 2.1 The space ST of symmetric tensorial functions on LM is a Poisson algebra
with respect to the Poisson bracket defined in (2.18).

It is convenient to introduce the multi-index notation

ri1i2...ip−k
≡ ri1 ⊗s ri2 ⊗s · · · ⊗s rip−k

for 0 ≤ k ≤ p− 1.
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Let
ˆ[[Xf̂ ]] = [[Xf̂ ]]i1i2...ip−1ri1i2...ip−1 and ˆ[[Xĝ]] = [[Xĝ]]

i1i2...ip−1ri1i2...ip−1

denote the vector valued equivalence classes of vector fields determined by f̂ ∈ ST p and
ĝ ∈ ST q. Define a bracket by

[ ˆ[[Xf̂ ]], ˆ[[Xĝ]]] = [[[Xf̂ ]]i1i2...ip−1 , [[Xĝ]]
ipip+1...ip+q−2 ]ri1i2...ip+q−2

= [[[Xf̂
i1i2...ip−1 , Xĝ

ipip+1...ip+q−2 ]ri1i2...ip+q−2 ]] (2.19)

where the bracket on the right-hand side is the ordinary Lie bracket of vector fields calculated
using arbitrary representatives. One shows that

[Xf̂
i1i2...ip−1 , Xĝ

ipip+1...ip+q−2 ]ri1i2...ip+q−2 ∈ [[X{f̂ ,ĝ}]] , (2.20)

and thus the bracket defined in (2.19) is well-defined, and we write

[ ˆ[[Xf̂ ]], ˆ[[Xĝ]]] = [[X̂{f̂ ,ĝ}]] . (2.21)

Moreover, the bracket defined in (2.19) is anti-symmetric. Denote the direct sum of the
vector spaces HV (ST p) by HV (ST ).

Theorem 2.2 The vector space HV (ST ) of vector-valued equivalence
classes of Hamiltonian vector fields on LM is a Lie algebra with respect
to the bracket defined in (2.19).

In general, it can be observed that n-symplectic geometry selects “allowable observables”
in the sense that not every ⊗p

sR
n-valued function on LM is compatible with (2.13). It is

known [8] that the most general ⊗p
sR

n-valued function on LM that can satisfy (2.13) for
some set of vector fields must be a polynomial in the momentum coordinates with coefficients
in the set of functions that are invariant on fibers on LM. We denote this set by SHF p.
For a given p ≥ 1 the homogeneous degree p polynomials in SHF p form the set ST p, while
for p > 2 the lower-degree polynomials do not in general correspond to elements of ST q for
0 ≤ q < p. The reader is referred to Norris [8] for more details.

3 The metric tensor as a generalized Hamiltonian tensor for
free inertial observers

Now we wish to study the dynamics generated by the spacetime metric tensor Hamilto-
nian g on LM , where M is a 4-dimensional spacetime manifold, within the context of
4-symplectic geometry. First we consider the classical phenomena and then we examine the
prequantization assignments.
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Let ~g = gij∂i ⊗ ∂j be the local coordinate form of the metric tensor on spacetime, and
let ĝ = gijπa

i π
b
jra ⊗s rb denote the corresponding symmetric tensorial function on LM . As

a special case of (2.13), the 4-symplectic structure equation is

dĝij = −2X(i
ĝ dθj) (3.1)

and the associated Hamiltonian vector fields Xi
ĝ determined by this equation have the local

expressions

Xi
ĝ = gabπi

a

∂

∂xb
− 1

2
{∂g

ab

∂xj
πi

aπ
k
b + T ik

j }
∂

∂πk
j

. (3.2)

To fix the nonuniqueness globally in these vector fields one can impose the invariantly
defined constraint equation

Xi
ĝ Xj

ĝ dθk = 0 ∀ i, j, k = 0, . . . , 3 . (3.3)

This condition uniquely determines the arbitrary functions T ij
k so that the resulting Hamil-

tonian vector fields are
Xi

ĝ = gabπi
a

∂

∂xb
+ Γb

jcg
acπi

aπ
k
b

∂

∂πk
j

. (3.4)

The functions Γb
jc are the Christoffel symbols of the Levi-Civita connection defined by ~g.

It is straightforward to check that the distribution on LM spanned by the vector fields

Bk = ĝkiX
i
ĝ

= (π−1)j
k(

∂

∂xj
+ Γa

ijπ
b
a

∂

∂πb
i

) (3.5)

is the horizontal distribution of the Levi-Civita connection. Here ĝij = (gab)(π−1)a
i (π

−1)b
j

where the functions gij are the components of the matrix inverse of (gij) and (π−1)j
kπ

k
i =

δj
i . The vector fields Bi are easily seen to be the “standard horizontal vector fields” [4]

determined by the connection. Note that the constraint equation (3.3) is equivalent to the
property that the Levi-Civita connection has no torsion.

Let us next consider the dynamics associated with the Hamiltonian vector fields Xi
ĝ

defined in equation (3.4). When there is only a single Hamiltonian vector field Xf̂ , as in

the case for the tensorial R4-valued function f̂ as well as in standard symplectic geometry
on T ∗M , then the dynamics is given by the integral curves of Xf̂ . One can ask if the
distribution spanned by the Xi

ĝ is integrable, but it is well known that only flat connections
have integrable distributions. On the other hand, the vector fields Bk, and hence also the
vector fields Xi

ĝ, are tangent to the subbundle of orthonormal linear frames OM determined
by ĝ. Thus we may define an “integral” of the set of Hamiltonian vector fields Xi

ĝ to
be OM [8]. Because the integrals of the Xi

ĝ do not form an involutive distribution, the
subbundle OM is not a leaf of a foliation induced by the Xi

ĝ alone. Instead OM serves as
the analogue of the “constant-energy surfaces” in standard symplectic geometry.
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Since a section of OM represents a local orthonormal linear frame field on M we may
conclude that the dynamics defined by the four Hamiltonian vector fields is the dynamics
of orthonormal frames, and hence the dynamics of local observers on spacetime. More ex-
plicitly, consider the integral curves of the “timelike” Hamiltonian vector field X0

ĝ . (Here
“timelike” means that X0

ĝ projects to a timelike vector field on M .) The differential equa-
tions for the integral curve of X0

ĝ are, from equation (3.4),

dxi

dt
= gijπ0

j ,
dπk

j

dt
= Γb

jcg
acπ0

aπ
k
b . (3.6)

These equations decouple into the two sets of equations. For k = 0 we obtain

dxi

dt
= gijπ0

j ,
dπ0

j

dt
= Γb

jcg
acπ0

aπ
0
b , (3.7)

and for k = α = 1, 2, 3,
dπα

j

dt
= Γb

jcg
acπ0

aπ
α
b . (3.8)

The pair of equations (3.7) combine into the second order geodesic equation

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0 , (3.9)

while equation (3.8) can be rewritten as

Dπα
j

Dt
=
dπα

j

dt
− Γk

ij

dxi

dt
πα

k = 0 , α = 1, 2, 3 . (3.10)

These last equations are just the equations for parallel transport of the 1, 2, and 3 legs of a
coframe along the geodesic determined by equation (3.9). The result is that X0

ĝ generates
parallel transport of linear frames and coframes along timelike geodesics of ĝ. If we repeat
this discussion for, say X1

ĝ , then again we obtain parallel transport of linear frames along
geodesics, but these geodesics will generally be spacelike. The four Hamiltonian vector fields
Xi

g associated with the spacetime metric tensor can therefore be used to construct the local
Lorentzian coordinate systems carried by a freely-falling observer.

4 Development of 4-symplectic geometry on the orthonormal
frame bundle and the spin bundle of spacetime.

Let M be a four-dimensional manifold. The orthonormal frame bundle OM can be obtained
as a bundle reduction of LM via symmetry breaking by the tensor field ĝ : LM → T 2

0 R4,
specifically, OM = ĝ−1(η) where η = diag(1,−1,−1,−1). The reduced bundle OM has as
its standard fiber the Lorentz group O(1, 3). Let M be space and time orientable and denote
an arbitrary choice of component of OM by OoM . Then OoM is a principal fiber bundle
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over M with standard fiber, SO0(1, 3), the connected identity component of the Lorentz
group.

Now recall the structure of the spin bundle SM over OoM [1]. SM is a principal fiber
bundle over M with standard fiber SL(2,C), the special linear group on C 2. The spin
structure consists of SM with a bundle homomorphism λ : SM → OoM and universal
covering group homomorphism Λ : SL(2,C) → SO0(1, 3) such that λ(p · g) = λ(p) · Λ(g)
for p ∈ SM and g ∈ SL(2,C). SM is then a double cover of OoM . We recall that if M is
noncompact then such a spin structure exists if and only if OoM is trivial [3].

Motivated by the fact that the bundle of frames of 2-spinors is such a spin structure over
OoM , we would like to put a 4-symplectic structure on an arbitrary spin bundle. A natural
choice would be a 4-symplectic structure inherited from OoM . We may simply pull back the
canonical one-form on OoM . Let θ̃ := λ∗(θ T (OoM)). Then dθ̃ = λ∗(dθ T (OoM)). For
g ∈ SL(2,C) it follows that R∗g θ̃ = Λ(g)−1 · θ̃. So dθ̃ is tensorial, closed, and nondegenerate
in the sense of (2.6) and thus is a candidate for an R4-valued 4-symplectic form on SM .

Now for the tensorial metric function ĝ : LM → T 2
0 R4 [8], we note that ĝ OoM = η

and d(ĝ OoM) = 0. Thus the 4-symplectic equation becomes

X(i
η dθj) = 0. (4.1)

Observe that the constraint equation (3.2) is identically satisfied in this case. We have for
Hamiltonian vector fields on OoM ,

Xi
η = T ik

j

∂

∂πk
j

; where T (ik)
j = 0. (4.2)

Consequently the corresponding Hamiltonian vector fields at u ∈ SM induced by isomor-
phism λ∗ TuSM are also purely vertical. So this construction of Hamiltonian vector fields
on SM is too restrictive.

5 Prolongation of frame bundles and lifts of metric connec-
tion geometry

Recognizing that the restriction of the 4-symplectic equation to OoM is the source of our
difficulty in obtaining Hamiltonian vector fields, we are motivated to enlarge SM to recover
the geometry of the full frame bundle. We do so by the method of prolongation of the frame
bundle [2], that is, the construction of a principal fiber bundle whose structure group is the
universal cover of the structure group of the frame bundle. Note that LoM , the connected
component of LM containing OoM as a subbundle, can be reconstructed from OoM as
it can be identified with the extension OoM ×SO0(1,3) GL

+(4,R), where GL+(4,R) is the
component of GL(4,R) containing the identity. We recall that the “canonical identifica-
tion” [2]

OoM ×SO0(1,3) GL
+(4,R) → LoM : [(p, ei), g] 7→ (p, ei · g)
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is a bundle isomorphism. Although LoM is a principal fiber bundle with fiber GL+(4,R),
it is also a bundle associated to the principal fiber bundle OoM .

To motivate the analogous extension of SM , let us study the spin structure map λ :
SM → OoM . The group SL(2,C) is the universal cover of SO0(1, 3) and λ is a double
cover respecting the covering homomorphism. Denote the universal cover of GL+(4,R) as˜GL+(4,R) with projection Λ̃ : ˜GL+(4,R) → GL+(4,R). We observe that ˜GL+(4,R) is a
2–1 cover of GL+(4,R).

Now SL(2,C) is a proper Lie subgroup of ˜GL+(4,R). Indeed it is known [6] that
SL(2,C) is isomorphic to the simply connected spin group Spino(1, 3), and thus is generated
by units in the Clifford algebra Cl(1, 3) = Cl(R4, η). Moreover Cl(1, 3) is a subalgebra of
Cl(3, 3) whose units in turn generate Spino(3, 3) ' ˜SL(4,R), the universal covering group
of SL(4,R). It follows that SL(2,C) is a Lie subgroup of ˜SL(4,R). Now GL+(4,R) '
R+ × SL(4,R) and R+ is contractable, so ˜GL+(4,R) ' R+ × ˜SL(4,R) and thus we have
that ˜SL(4,R) is a Lie subgroup of ˜GL+(4,R). Thus we obtain the following short exact
sequences:

< 1 > → Z2 → ˜GL+(4,R) Λ̃
→ GL+(4,R) → < 1 >

̃ ↑ j ↑
< 1 > → Z2 → SL(2,C) Λ

→ SO0(1, 3) → < 1 >
(5.1)

where ̃ and j are the inclusion homomorphisms.
Now define L̃oM = SM ×SL(2,C)

˜GL+(4,R) as a prolongation of SM . Then L̃oM is a
principal fiber bundle over M with standard fiber ˜GL+(4,R) and with action defined by
[u, a] · b = [u, ab] for u ∈ SM and a, b ∈ ˜GL+(4,R). Observe that SM may be identified
as a submanifold of L̃oM since SM = SM ×SL(2,C) SL(2,C). Define a map λ̃ : L̃oM →
LoM : [u, a] 7→ [λ(u), Λ̃(a)]. Then λ̃ is well-defined and the following diagram commutes.

SM ı̃
↪→ L̃oM

λ ↓ λ̃ ↓
OoM i

↪→ LoM

(5.2)

Moreover,
λ̃([u, a] · b) = λ̃([u, a]) · Λ̃(b) ∀u ∈ SM, ∀a, b ∈ ˜GL+(4,R).

So (L̃oM, λ̃) is a prolongation of LoM . The topological condition for existence of the
prolongation of LoM is the same as the condition for the existence of a spin structure [2].

Note that SM can be recovered from L̃oM by symmetry breaking via the tensor field
g̃ : L̃oM → T 2

0 R4, where we define g̃ := λ̃∗ĝ. As before, ĝ : LoM → T 2
0 R4 is a tensorial

function corresponding to a Riemannian metric tensor field on M . g̃ is also a tensorial map
and SM = g̃−1(η). Indeed recall that OoM is obtained by symmetry breaking of LoM , i.e.,
OoM = ĝ−1(η) where η = diag(1,−1,−1,−1). From the construction of prolongations and
extensions in diagram (5.2) we have that

g̃−1(η) = λ̃−1 ◦ ĝ−1(η) = λ̃−1(OoM) = SM. (5.3)
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Consider now the problem of lifting connections through this diagram. Let ωg be the
unique Levi-Civita connection on OoM determined by the metric function ĝ. The one-
form ωg extends naturally to a torsionless metric connection ω̄g on LoM , considered to
be the unique Levi-Civita connection on LoM . Now lift the canonical one-form to SM ,
defining as before, θ̃ := λ∗θ. Observe that θ̃ is tensorial relative to the representation
SL(2,C) → GL(4,R) given by a · v = Λ(a)(v) for a ∈ SL(2,C) and v ∈ R4 and it
also vanishes on vertical vectors [1]. Define ω̃g := Λ−1

∗ ◦ (λ∗ωg). Then ω̃g is a connection
on SM [1], sometimes called the spin connection. Furthermore ω̃g is torsionless in the
sense that Dω̃g θ̃ = 0, where Dω̃g is covariant differentiation with respect to connection
ω̃g. To verify this, first note the above representation induces a Lie algebra representation
sl(2,C) → gl(4,R) given by A · v = Λ∗(A)(v) for A ∈ sl(2,C), v ∈ R4 . Then observe that

Dω̃g θ̃ = dθ̃ + ω̃g∧̇θ̃
= λ∗dθ + (Λ∗ ◦ Λ−1

∗ ◦ λ∗ωg)∧(λ∗θ) (5.4)
= λ∗(Dωgθ)
= 0

where
ω̃g∧̇θ̃(X,Y ) =

1
2
[ω̃g(X) · θ̃(Y )− ω̃g(Y ) · θ̃(X)], ∀X,Y ∈ TuSM.

A question arises. Is this the same connection we would obtain by lifting ω̄g to L̃oM
and restricting the result to SM ? Define

˜̄ωg := Λ̃−1
∗ ◦ λ̃∗ω̄g.

Then it follows that
˜̄ωg SM = ω̃g.

We can extract from diagram (5.1) the following commuting diagram:

SL(2,C) ̃
↪→

˜GL+(4,R)
Λ ↓ Λ̃ ↓

SOo(1, 3) j
↪→ GL+(4,R)

(5.5)

Since the Lie algebra of a Lie group G can be identified with TeG, the corresponding diagram
of Lie algebras gives us that ̃∗ ◦ Λ−1

∗ = Λ̃−1
∗ ◦ j∗. Now let X ∈ T (SM). Then

ı̃∗ ˜̄ωg(X) = Λ̃−1
∗ ◦ λ̃∗ω̄g (̃ı∗X)

= Λ̃−1
∗ ◦ ω̄g(λ̃∗ı̃∗X)

= Λ̃−1
∗ ◦ ω̄g(i∗λ∗X)

= Λ̃−1
∗ ◦ λ∗i∗ω̄g(X) (5.6)

= Λ̃−1
∗ ◦ λ∗(j∗ ◦ ωg)(X)

= Λ̃−1
∗ ◦ j∗ ◦ λ∗ωg(X)

= ̃∗ ◦ Λ−1
∗ ◦ λ∗ωg(X)

= ̃∗ ◦ ω̃g(X).
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Thus the metric connection geometry on L̃oM lifts naturally from the base frame bundle
LoM and is shown to be an an extension of the natural torsionless spin connection on SM .

6 Hamiltonian vector fields relative to a metric function on
L̃oM

Now that we have recalled [2] the generalization of a spin structure over the frame bundle
L̃oM , we can consider finding systems of Hamiltonian vector fields for tensorial metric
functions induced on L̃oM . It is proven [8] that the Hamiltonian vector fields Xi

ĝ are
tangent to OM as a subbundle of LM . We wish to investigate the analogue on L̃oM .

Note that we may extend θ̃ to L̃oM , i.e., define θ̃ := λ̃∗θ on L̃oM . The R4-valued
one-form θ̃ is tensorial relative to the representation ˜GL+(4,R) → GL(4,R) given by
a · v = Λ̃(a)(v) for a ∈ ˜GL+(4,R) and v ∈ R4. This implies that dθ̃ is a nondegenerate
closed tensorial two-form on L̃oM and thus provides L̃oM with a 4-symplectic structure.

We now seek R4-valued vector fields Xi
g̃ on L̃oM that are solutions to the system

dg̃ij = −2X(i
g̃ dθ̃j). (6.1)

It is convenient to introduce local coordinates on L̃oM . In order to define a chart of L̃oM
in a neighborhood of ũ ∈ L̃oM, first choose a local chart (xi, U) at p := π̃(ũ) ∈ U, where
π̃ = π ◦ λ̃ is the canonical projection of L̃oM onto M. Then, using a local trivialization,
ψ : π̃−1(U) ∼= U × ˜GL+(4,R) and the universal covering property of ˜GL+(4,R), one has
that for ψ(ũ) = (p, g) there is an open neighborhood V ⊂ ˜GL+(4,R) containing g such that
id× Λ̃ U × V is a diffeomorphism onto U × Λ̃(V ) that respects the right action. We may
now define coordinates {x̃i, π̃i

j} from an open neighborhood of ũ in π̃−1(U) to x(U)× Λ̃(V ),{
x̃i = xi ◦ λ̃
π̃i

j = πi
j ◦ λ̃.

(6.2)

Since we have defined the symplectic structure and tensorial metric function as pullbacks
via λ̃ of the respective objects on LoM , we can find local expressions on U × V for the
Hamiltonian vector fields using the same calculations as on LoM . Invoking the analogous
zero-torsion property of the lifted Levi-Civita connection,

Xi
g̃ Xj

g̃ dθ̃k = 0 ∀ i, j, k = 0, . . . , 3 . (6.3)

we obtain
Xi

g̃ = g̃abπ̃i
a

∂

∂x̃b
+ Γ̃b

jcg̃
acπ̃i

aπ̃
k
b

∂

∂π̃k
j

(6.4)

where Γ̃b
jc are the Christoffel symbols of the lifted Levi-Civita connection. Thus we obtain

the parallel transport of linear frames and coframes along timelike geodesics of Γ,

d2x̃i

dt2
+ Γ̃i

jk

dx̃j

dt

dx̃k

dt
= 0 , (6.5)
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and
Dπ̃α

j

Dt
=
dπ̃α

j

dt
− Γ̃k

ij

dx̃i

dt
π̃α

k = 0 , α = 1, 2, 3 . (6.6)

when restricted to the open neighborhood U × V of L̃oM . This is in exact analogy to
that of the n-symplectic theory on LM [8]. We can proceed to verify that the horizontal
distribution and thus the set of Hamiltonian vector fields is tangent to SM . So SM is
an “integral” of the set of Hamiltonian vector fields and is analogous to constant-energy
surfaces in standard symplectic geometry.

7 Initiation of prequantization procedure

Now that we have in hand the geometry of spin bundles we turn to a quantum mechanical
application. We want to recast the fundamentals of the Kostant–Souriau theory of geometric
quantization [12], taking for the 4-symplectic manifold the prolongation L̃oM of the bundle
of linear frames of spacetime M with the 4-symplectic two-form dθ̃. We restrict attention
to the essentials of the initial pre-quantization procedure.

In the naive prequantization program one assigns to each observable f : T ∗M → R a
Hermitian operator

f −→ Pf = −ih̄Xf . (7.1)

The linear operator Pf acts on the set of square integrable functions ψ : T ∗M → C,
square integrability being defined with respect to the natural Liouville volume element on
T ∗M . Although the assignment (7.1) is not the correct assignment in the full geometric
quantization theory, it will suffice for our purposes here.

We consider a spacetime (M,~g) which admits a spin structure. Let Xi
g̃ be the set of

Hamiltonian vector fields on SM , where SM is viewed as a subbundle of L̃oM . Consider the
prequantization operator assignments that one can make for the metric tensor Hamiltonian
observable on L̃oM . The natural analogue of (7.1) is

g̃ → Pg̃ = −ih̄X̂g̃ = −ih̄Xi
g̃ri , (7.2)

with the Xi
g̃ given in (6.4).

We consider the spinor representation of the operator Pg̃ on L2(SM,C 4), which we
define by

g̃ −→ Pg̃ −→ −γiP i
g̃ = ih̄γiX

i
g̃ = ih̄γiBi , (7.3)

where the four γi are appropriate Dirac matrices. In writing equation (7.3) we note that
the Bi = g̃ijX

i
g̃ are the horizontal vector fields defined by the Levi-Civita connection on

L̃oM . It follows that −γiP i
g̃ in equation (7.3) is the Dirac operator on SM [1].

Let Ψ ∈ L2(SM,C 4) be a Dirac 4-spinor transforming under SL(2,C) transformations
on the spin bundle as

Ψ(u · a) = ρ(a−1) ·Ψ(u) , ∀ u ∈ SM , ∀ a ∈ SL(2,C) , (7.4)
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where ρ denotes the 4-spinor representation of SL(2,C). Then it follows that

γiP i
g̃(Ψ)(u · a) = ρ(a−1) · γiP i

g̃(Ψ)(u) (7.5)

Thus the eigenvalue equation
−γiP i

g̃(Ψ) = µΨ (7.6)

for the prequantization operator γiP i
g̃ is tensorial on SM and is in fact just the Dirac

equation
ih̄γiBi(Ψ) = µΨ . (7.7)

8 Conclusions

This work incorporating geometry into the physics of spinning particles is significant in
view of the central role played by the Dirac equation in all relativistic theories involving
the half-integer spin properties of fermions. Moreover, our work addresses in a rather direct
way one of the most fundamental features of the quantum theory, namely the unavoidable
interaction of observer and object. Indeed, since the orthonormal frame bundle OM may
be considered the “bundle of Lorentzian observers,” the bundle OM together with the 4-
symplectic structure might be called the “phase space of relativistic observers”. This seems
an ideal setting to consider questions relating to the quantum mechanical phenomenon of the
interaction of observer and object. Indeed, the spin bundle SM covering OM has structure
group the universal cover of the Lorentz group [1] and it also has a previously unrecognized
4-symplectic structure that, following a natural geometrical construction, leads easily to
the correct relativistic equation for the fermions. Because our procedure parallels those
of standard geometric quantization on symplectic manifolds, we are led to investigate the
construction of the Hilbert space of prequantization, the frame bundle analogue of the line
bundle, polarizations on this frame bundle, and initiation of the quantization procedure.
We hope to return to these questions in later publications.
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