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Abstract

We show that covariant field theory for sections of π : E → M lifts in a natural

way to the bundle of vertically adapted linear frames LπE. Our analysis is based

on the fact that LπE is a principal fiber bundle over the bundle of 1-jets J1π. On

LπE the canonical soldering 1-forms play the role of the contact structure of J1π. A

lifted Lagrangian L:LπE → R is used to construct modified soldering 1-forms, which

we refer to as the Cartan-Hamilton-Poincaré 1-forms. These 1-forms on LπE pass to

the quotient to define the standard Cartan-Hamilton-Poincaré m-form on J1π. We

derive generalized Hamilton-Jacobi and Hamilton equations on LπE, and show that

the Hamilton-Jacobi and canonical equations of Carathéodory-Rund and de Donder-

Weyl are obtained as special cases. The manifold LπE emerges as a natural arena for

a unified theory that contains, in addition to the sector for sections of π, dynamical

sectors for a geometry for M and a geometry for the fibers of E.
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1 Introduction

The Cartan-Hamilton-Poincaré (CHP) m-form is the central object in covariant Lagrangian

field theory. The ingredients which go into the construction of this m-form are:

1. A Lagrangian L : J1π → R, on the bundle of 1-jets of sections of π : E → M , where

E is the configuration manifold of the theory,

2. A volume on the m-dimensional parameter space M ,

3. The contact structure of J1π.

It is the contact structure [17] in this mixture of ingredients that provides the geometrical

foundation of the theory. In this paper we give a new geometrical formulation of the covariant

field theory on J1π by lifting it to the bundle of vertically adapted linear frames LπE of E.

We will show that the full depth of Lagrangian and Hamiltonian field theory on J1π has

a useful geometrical representation on the bundle LπE . In this representation the role of

the contact structure of J1π is taken over by the canonical vector-valued soldering 1-form

on LπE. Introduction of a Lagrangian leads to the definition of a modified soldering form,

and this vector-valued 1-form plays the role of the CHP-m-form. These structures pass to a

certain quotient of LπE to give the standard structures on J1π. The advantaged gained by

this reformulation is that it allows us to utilize the natural geometry that is supported on

LπE, namely n-symplectic geometry, to further develop covariant field theory.

If E is an arbitrary n-dimensional manifold, then the bundle of linear frames λ : LE → E

supports a canonically defined Rn-valued 1-form, the “soldering” 1-form. n-symplectic ge-

ometry on LE is the generalized symplectic geometry that emerges upon taking the soldering

1-form θ as the generalized symplectic potential. This geometry, including the notions of

n-symplectic observables, the corresponding generalized Hamiltonian vector-valued vector

fields, and generalized Poisson and graded Poisson brackets, has been developed in a series

of papers [5, 6, 12, 13, 14, 15]. A sketch of the basic structure of the theory can be found in

section 2, but let us point out here that in [14] it was shown that the fundamentals of the

canonical symplectic geometry on the cotangent bundle T ∗E can be constructed entirely in

terms of the n-symplectic geometry on LE.
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When E has extra structure, in particular when π : E → M is a fiber bundle as it is

in Lagrangian field theory, then the n-symplectic geometry likewise inherits extra structure

on LE. In particular, the fiber structure of π : E → M leads to a reduction of LE to the

subbundle of vertically adapted linear frames LπE, with a corresponding reduction in the

generality of n-symplectic observables. The structure group Gv of LπE is the subgroup of

GL(n) that is block lower triangular, corresponding to the convention that the last k = n−m

vectors in each linear frame are required to be vertical. Following the model construction

given in [14] Lawson showed [11, 6] that the multisymplectic geometry [7] on the affine cojet

bundle J1∗π can also be derived directly from the n-symplectic geometry on LπE.

Turning our attention in this paper to the covariant field theory on J1π, we will show

that the geometrical foundations of the theory, namely the contact structure on J1π, follows

directly from the n-symplectic structure on LπE, while the CHP-form follows from a modified

soldering form. The central idea on which the analysis is based is the following theorem.

Theorem 1.1 Let π : E → M be an m+k dimensional fiber bundle over the m-dimensional

manifold M . The vertically adapted frame bundle LπE is a principal H = GL(m)× GL(k)

bundle over J1π. In particular, J1π ∼= LπE/H.

As a consequence of this theorem, which we prove in section 3, the canonical soldering forms

on LπE pass to the quotient to define the contact structure of J1π (see section 5).

Furthermore, this theorem leads to a decomposition of LπE. Once a Lagrangian is

introduced, this decomposition will lead us to larger theory that is a type of Kaluza-Klein

theory that includes a dynamical sector for a geometry of the parameter space (“spacetime”)

M , a dynamical sector for a geometry of the fibers of E, in addition to the original sector

for the sections of E. A simple picture of this development can be sketched out as follows.

Let (xi) be local coordinates on M and let (yA) be fiber coordinates on E, so that

(zα) = (xi, yA) are adapted local coordinates on E. With respect to such coordinates a

general vertically adapted linear frame at a point in E will be of the form

(ei, eA) = (vj
i

∂
∂xj + vB

i
∂

∂yB , vB
A

∂
∂yB )

i, j = 1, . . . ,m, A, B = m + 1, . . . ,m + k

The first m vectors (ei) are non-vertical while the last k vectors (eA) are vertical with respect

to π. The matrices (vj
i ) and (vB

A) are necessarily non-singular, while the matrix (vB
i ) ∈ Rk×m
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is arbitrary. Hence we may take the collection (xi, yA, vj
i , v

B
i , vB

A) as local coordinates on

LπE. We can represent an arbitrary adapted linear frame in terms of these local coordinates

as the (m + k)× (m + k) matrix (
vj

i 0
vB

i vB
A

)
Using the notation πi

j = (vi
j)
−1 and πB

A = (vB
A)−1, this matrix can be decomposed as follows:(

vj
i 0

vB
i vB

A

)
=

(
δj
k 0

πa
kv

B
a δB

C

)(
vk

i 0
0 vC

A

)
(1.1)

The first factor is H invariant and defines a natural projection to J1π. We thus obtain the

decomposition

LπE = J1π ×E (LV E ×M LM)

where LV E denotes the bundle of vertical frames of E.

These results suggest that it may be useful to lift the covariant Lagrangian field theory

on J1π to LπE. In particular on LπE we have available the n-symplectic geometry to use

in studying the structure of field theories. We show in section 4 that for a lifted Lagrangian

L = ρ∗(L), the n-symplectic Hamiltonian vector fields defined by vertical vector fields on E

may be thought of as variational vector fields. If X is such a vector field then X(L) gives

the Euler-Lagrange operator to within a total divergence.

In section 6 we turn to the problem of constructing, on LπE, a lifted version of the CHP

m-form. We show that in fact one can use a lifted Lagrangian to define an Rn-valued CHP-

form using the canonical Rn-valued soldering form θ. The key to the construction is to use

the fundamental vertical vector fields on LπE together with the Lagrangian to give a global,

invariant definition of the covariant momentum, which is essentially a frame bundle version

of the Legendre transformation of classical theory. The result is that the Rn-valued CHP-

form is a modified, or non-canonical soldering form θL. This new vector-valued CHP-form

θL passes to the quotient to define the standard CHP-m-form on J1π.

As an application of the general formalism we derive in section 7 a generalized Hamilton-

Jacobi differential equation and generalized Hamilton equations. Under appropriate assump-

tions these equations reproduce the Hamilton-Jacobi equations and Hamilton equations of

the de Donder-Weyl [4, 16] and Carathéodory-Rund [2, 16] theories.
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We recall that there is a certain degree of arbitrariness in Rund’s [16] canonical formalism

for Carathéodory’s theory. We find that by identifying the canonical variables introduced

here with the canonical variables in Rund’s formalism, the undetermined features of the

Carathéodory-Rund theory can be given a natural interpretation on LπE, namely as the

variables defining linear frames for M . Looking again at the decomposition (1.1) we see

now that the entries in the right-hand-factor represent a linear frame for M (the (vj
i ) factor)

together with a linear frame for the fibers of E (the (vB
A) factor). Thus by dropping the

condition that the Lagrangian L : LπE → R be a lifted Lagrangian, one arrives at a theory

where the solutions of the Euler-Lagrange field equations would determine not only a section

of π, but also a linear frame field for M together with a linear frame field for the fibers of

E. We present a model Lagrangian in section 9 that describes a Kaluza-Klein type theory,

formulated in a natural way on LπE. Section 10 contains concluding remarks together with

plans for applications and extensions of the results presented in this paper.

2 The Vertically Adapted Linear Frame Bundle LπE

Let π : E → M be a fiber bundle where M is m-dimensional and E is n = m+k-dimensional.

Lower case latin indices are assumed to range over 1 . . . m, upper case latin indices over

m + 1 . . . m + k, and greek indices over 1 . . . m + k. This convention will be used throughout

the paper.

An adapted frame at e ∈ E is a frame where the last k basis vectors are vertical. Note that

coordinate frames that come from adapted coordinates are adapted frames. The adapted

frame bundle of π, denoted LπE, consists of all adapted frames for E.

LπE = {(e, {ei, eA}) : e ∈ E, {ei, eA} is a basis for TeE, and duπ(eA) = 0}

The canonical projection, λ : LπE → E, is defined by λ(e, {ei, eA}) = e.

LπE is a reduced subbundle of LE, the frame bundle of E (Lawson [11]). As such it

is a principal fiber bundle over E. Its structure group is Gv, the nonsingular block lower

triangular matrices.

Gv =

{(
A 0
C B

)
: A ∈ GL(m), B ∈ GL(k), C ∈ Rkm

}
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Gv acts on LπE on the right by

(e, {ei, eA}) ·
(

A 0
C B

)
= {(e, {eiA

i
j + eACA

j , eABA
B})

2.1 Coordinates

If (xi, yA) are adapted coordinates on an open set U ⊆ E, then one may induce several

different coordinates on λ−1(U). First consider the coframe or n-symplectic momentum

coordinates (xi, yA, πi
j, π

A
j , πA

B) on λ−1(U) defined by

xi(e, {ei, eA}) = xi(e) πi
j(e, {ei, eA}) = ei(

∂

∂xj
) πA

B(e, {ei, eA}) = eA(
∂

∂yB
)

yA(e, {ei, eA}) = yA(e) πA
j (e, {ei, eA}) = eA(

∂

∂xj
)

Here (ei, eA) is the dual frame to (ei, eA). We have as is customary retained the same symbols

for the induced horizontal coordinates.

Secondly consider the frame or n-symplectic velocity coordinates (xi, yA, vi
j, v

A
j , vA

B) on

λ−1(U) defined by

xi(e, {ei, eA}) = xi(e) vi
j(e, {ei, eA}) = ej(x

i) vA
B(e, {ei, eA}) = eB(yA)

yA(e, {ei, eA}) = yA(e) vA
j (e, {ei, eA}) = ej(y

A)

The v coordinates, viewed together as a block triangular matrix, form the inverse of the π

coordinates above. The blocks have the following relations:

vi
jπ

j
k = δi

k vA
j πj

k + vA
BπB

k = 0 vA
BπB

C = δA
C

Lastly consider the following coordinates which are constructed from the previous two.

Define (xi, yA, ui
j, u

A
j , uA

B) on λ−1(U) by

xi(e, {ei, eA}) = xi(e) ui
j = πi

j uA
j = vA

i πi
j = −vA

BπB
j

yA(e, {ei, eA}) = yA(e) uA
B = πA

B

It will turn out that the uA
j coordinates are pull-ups of the standard jet coordinates on J1π.

As such, we will refer to these coordinates as Lagrangian coordinates.
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Later in the paper we will need the following formulas for the fundamental vertical vector

fields E∗α
β on LπE in Lagrangian coordinates.

E∗i
j = −ui

k

∂

∂uj
k

E∗A
B = −uA

C

∂

∂uB
C

E∗i
A = ui

kv
B
A

∂

∂uB
k

(2.2)

2.2 n-symplectic structure

n-symplectic geometry arises naturally on the frame bundle LE of any n-dimensional man-

ifold E. LE supports a canonically defined Rn-valued 1-form θ, the soldering 1-form, and

n-symplectic geometry is the geometry on LE when one takes dθ as a vector-valued gener-

alized symplectic form. We present here a sketch of the structure of the theory and refer the

reader to the literature [5, 6, 12, 13, 14, 15] for more details. See also the works of de León,

Salgado et al. [3] and Awane [1].

The intrinsic definition of the soldering 1-form θ parallels the definition of the canonical

form on T ∗M .

θu(X) = eα(duλ̄(X))rα = θα
u(X)rα (2.3)

Here u = (e, {eα}) ∈ LE, λ̄ : LE → E is the canonical projection, and {rα} is the standard

basis for Rn. In canonical coordinates,

θα = πα
βdxβ

The above formula parallels the local coordinate formula ϑ = pidqi for the canonical 1-form

on T ∗M .

Because the soldering 1-form θ is vector-valued, the natural structure equation for n-

symplectic geometry takes the generalized form

df̂α1α2···αp = −p!Xf̂
α1α2···αp−1 dθαp (2.4)

Here f̂ = (f̂α1α2···αp) : LE → ⊗pRn is a vector-valued function on LE and Xf̂ = (Xf̂
α1α2···αp−1)

is the corresponding set of Hamiltonian vector fields. (Each superscript αk, k = 1, 2, . . . , p,

runs from 1 to n). Moreover, since the soldering form is equivariant under the free right action

of the structure group GL(n, R) on LE, the class of functions that can satisfy (2.4) is re-

stricted. They divide naturally into vector-valued functions that map to either the symmetric
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tensor spaces (⊗s)
pRn or the anti-symmetric tensor spaces (⊗a)

pRn, where ⊗s and ⊗a denote

the symmetric and anti-symmetric tensor products, respectively. There is a naturally defined

Poisson bracket for both sets of observables, and the complete set of symmetric observables

is a Poisson algebra with respect to the bracket, while the set of anti-symmetric observables

is a graded Poisson algebra with respect to the bracket. These brackets, when restricted to

the subsets of tensorial observables, are the frame bundle versions of the Schouten-Nijenhuis

brackets [15]. On LπE the allowable tensorial observables [11] correspond to contravariant

tensor fields that are projectible to E.

As a reduced subbundle of LE, LπE has the n-symplectic geometry obtained by restricting

the soldering form. Since this soldering form is Rm+k-valued, we will denote it (θi, θA). Let

u = (e, {ei, eA}) be a point in LπE. If λ : LπE → E is the canonical projection and

X ∈ TuLπE, then θ defined as in (2.3) above splits naturally into the two terms

θu(X) = θi(X)ri + θA(X)rA

where (ei, eA) is the dual frame and (ri, rA) is the standard basis for Rm+k. In local momen-

tum coordinates,

θi = πi
jdxj θA = πA

j dxj + πA
BdyB

3 The Relationship between LπE and J1π

We will demonstrate three useful facts relating LπE and J1π.

1. J1π is an associated bundle to LπE [11].

2. LπE is a principal fiber bundle over J1π.

3. LπE is a pull-back bundle over J1π [11].

3.1 A special case

Consider the case where π is a trivial bundle. Let M = Rm and E = Rm × F with F a

k-dimensional manifold. Let π : Rm×F → Rm be the standard projection. It is known that
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for this bundle each 1-jet corresponds to an m-tuple of tangent vectors to F .

J1π ∼= Rm × (TF ⊕ · · · ⊕ TF )

It is clear that such a bundle is associated to LπE.

Let us examine LπE in this case. We will make use of the other projection mapping

π̄ : Rm × F → F . For each frame (u, {ei, eA}) in LπE, we decompose each vector into

ei = (vi, wi) eA = (vA, wA)

where vi = duπ(ei), wi = duπ̄(ei), vA = duπ(eA), and wA = duπ̄(eA). Note that vA = 0 by

the definition of LπE, so we have

ei = (vi, wi) eA = (0, wA)

The k vectors {wA} form a basis for Tπ̄(u) F, and the m vectors {vi} form a basis for Tπ(u) Rm.

The m vectors {wi} are simply an m-tuple of vectors in Tπ̄(u) F.

Decomposing all of LπE in this way, we obtain

LπE ∼= J1π ×E (L Rm × LF)

This is a bundle isomorphism over E = Rm × F . From this decomposition, it is clear that

LπE is a pull-back bundle over J1π. Furthermore, the fiber is the Lie group GL(m)×GL(k).

3.2 The general case

Consider an arbitrary fiber bundle π : E → M . In this more general setting, a 1-jet is no

longer simply an m-tuple of tangent vectors. There are three major ways of describing 1-jets,

each with its own charm:

1. Equivalence classes of sections of π.

2. Linear right-inverses to duπ.

3. Non-vertical m-dimensional subspaces of TuE.
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One quick way to define the projection from LπE to J1π is to map each adapted frame to

the span of its non-vertical elements.

(u, {ei, eA}) 7→ (u, span{ei})

However, we will benefit from starting with J1π as an associated bundle.

As stated earlier, the structure group of LπE is Gv, the nonsingular block lower triangular

matrices. This group Gv can be decomposed [11] into the product of two of its subgroups,

H and J , where

H =

{(
A 0
0 B

)
: A ∈ GL(m), B ∈ GL(k)

}
and

J =

{(
I 0
C I

)
: C ∈ Rkm

}
Note that J is Lie group isomorphic to the additive group Rkm.

We will show that J1π is a bundle associated to LπE with fiber Gv /H. Although H is

a closed Lie subgroup of Gv it is not normal. As such Gv /H does not have a natural group

structure; it is manifold with a left Gv-action. For each coset gH ∈ Gv /H, we select the

unique representative in J .(
A 0
C B

)
∼
(

A 0
C B

)(
A−1 0
0 B−1

)
=

(
I 0

CA−1 I

)
By choosing these representatives, we identify Gv /H with J and hence Rkm. These identi-

fications are diffeomorphisms.

Consider how the left Gv-action looks for our selected representatives.(
A 0
C B

)(
I 0
ξ I

)
=

(
A 0

C + Bξ B

)
∼
(

I 0
CA−1 + BξA−1 I

)
So the Gv-action appears affine when Gv /H is identified with Rkm. Therefore it is prudent

to use this identification to define an affine structure on Gv /H modelled on Rkm. This

Gv-invariant structure will pass to the fibers of the associated bundle, making it an affine

bundle.

Theorem 3.1 LπE ×Gv (Gv /H) ∼= J1π
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Proof: The isomorphism maps each equivalence class [(e, {ei, eA}, ξ)] to the linear map

φ : Tπ(e)M → TeE defined by φ(êi) = ei + ξA
i eA, where we use the basis êi = deπ(ei).

Corollary 3.2 LπE is a principal fiber bundle over J1π with fiber H.

Proof: This fact follows directly from proposition 5.5 in reference [10].

We will denote the projection from LπE to J1π by ρ. It is given by

ρ(e, {ei, eA}) = (e, τ) where τ(êi) = ei

We now show that the uA
j -coordinates defined earlier are the pull-ups of the jet coordinates.

If (xi, yA) are adapted coordinates on an open set U ⊆ E and u = (e, {ei, eA}) ∈ λ−1(U)

then

yA
i ◦ ρ(u) = yA

i (e, τ) = dey
A ◦ τ(

∂

∂xi

∣∣∣∣
π(e)

) = dey
A(ej ê

j(
∂

∂xi

∣∣∣∣
π(e)

))

= dey
A(ej)e

j(
∂

∂xi

∣∣∣∣
e

) = vA
j (u)πj

i (u) = uA
j (u)

What remains to be shown is that LπE is a pull-back bundle over J1π. To see this, we

will decompose each adapted frame in a manner similar to the trivial case covered earlier.

We can split each adapted frame (u, ei, eA) into three pieces:

1. A point in LM , (π(u), ẽi), where ẽi = duπ(ei)

2. A point in LV E, (u, eA), where LV E is the bundle of vertical frames over E

3. A point in J1π, (u, φ), where φ : Tπ(u)M → TuE is defined by φ(ẽi) = ei

Theorem 3.3 LπE ∼= J1π ×E (LV E ×M LM)

Proof: The isomorphism is given by (u, ei, eA) 7→
(
(u, φ), (u, eA), (π(u), ẽi)

)
. The inverse

map is quite nice:
(
(u, φ), (u, fA), (p, fi)

)
7→ (u, φ(fi), fA)
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4 Prolongations of Vector Fields to LπE

Definition 4.1 A Lagrangian on LπE is a function L : LπE → R. A Lagrangian on LπE

is lifted if it satisfies the auxiliary conditions

E∗i
j (L) = 0 E∗A

B (L) = 0

Remark Using (2.2) one can show that these conditions imply that L is constant on the

fibers of ρ : LπE → J1π, and thus is the pull up of a function on J1π. We will assume that

our Lagrangians are lifted until section 9 where we will drop this assumption in order to

study the extra GL(m)×GL(k) degrees of freedom in this bundle structure.

In order to see the role played by the canonical n-symplectic structure on LπE in La-

grangian field theory, we consider a variation of a local section φ : M → E. The variation of

φ can be defined by a vector field f on E that projects to the zero vector field on M , so that

in adapted local coordinates f has the form f = fA∂A. The associated tensorial function

f̂ : LπE → Rm+k is given in local coordinates on LπE by f̂ = f̂αr̂α, where

(f̂α) = (f̂ i, f̂A) = (0, fBπA
B)

The n-symplectic Hamiltonian vector field Xf̂ determined by f̂ is the unique solution of

equation (2.4) with p = 1. Thus Xf̂ is defined by

df̂α = −Xf̂ dθα

and in local coordinates it has the form [12]

Xf̂ = fA∂A −
∂fA

∂xj
πB

A

∂

∂πB
j

− ∂fA

∂yC
πB

A

∂

∂πB
C

Transforming to Lagrangian coordinates we find

Xf̂ =

(
fA∂A + (

∂fA

∂xj
+ uB

j

∂fA

∂yB
)

∂

∂uA
j

)
− (

∂fA

∂yC
uB

A)
∂

∂uB
C

=

(
fA∂A +

dfA

dxi

∂

∂uA
j

)
− (

∂fA

∂yC
uB

A)
∂

∂uB
C

(4.5)
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Lemma 4.2 Let f be a vertical vector field on E. The projection of the associated Hamil-

tonian vector field Xf̂ on LπE to J1π is the prolongation j(f) of f to J1π.

Proof The vector fields ∂
∂uB

C
are vertical with respect to ρ, and ρ∗(

∂
∂uA

j
) = ∂

∂yA
j
.

This lemma shows that the Hamiltonian vector field Xf̂ on LπE is a lift of the prolonga-

tion of f to J1π. That Xf̂ actually has the properties of the prolongation of f with respect

to Lagrangians follows from the following lemma. We let

EA(·) =
∂(·)
∂yA

− d

dxi

(
∂(·)
∂uA

i

)
denote the Euler-Lagrange operator in local coordinates on LπE.

Lemma 4.3 If Xf̂ is the n-symplectic Hamiltonian vector field on LπE of a vertical vector

field f on E, and if L is a lifted Lagrangian on LπE, then

Xf̂ (L) = fAEA(L) +
d

dxi
(fApi

A) (4.6)

Proof The proof is a straightforward calculation using (4.5).

After introducing the CHP 1-forms in the section 6 we will use (4.6) to lift the variational

principle to LπE.

Remark As mentioned in section 2.2 there are other observables in n-symplectic geometry

on LπE beyond those corresponding to vertical vector fields on E. In particular there is

the Poisson algebra of all vertical symmetric contravariant tensor fields on E, as well as

the graded Poisson algebra of all vertical antisymmetric contravariant tensor fields on E.

The associated (equivalence classes of) vector-valued Hamiltonian vector fields on LπE also

project to tensor fields on J1π. Since these vector-valued Hamiltonian vector fields generalize

the natural lift of a vector field from E to LπE, their projections to J1π can be taken as the

prolongation of the tensor fields on E to J1π. These ideas will be elaborated in more detail

elsewhere.
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5 The Contact Structure

The contact structure on J1π amounts to a natural splitting of the tangent and cotangent

spaces to E. For every (e, τ) ∈ J1π there is a natural splitting of TeE and TeE
∗ into horizontal

and vertical subspaces. This is usually encoded via the linear projections onto the vertical

and horizontal. Saunders [17] envisions the contact structure as linear endomorphisms of

the pullback vector bundles J1π ×E (TE) and J1π ×E (T ∗E). These maps can be defined

invariantly as follows. For (e, τ) ∈ J1π, X ∈ TeE, and ω ∈ T ∗
e E.

h(X) = τ ◦ deπ(X) v(X) = X − h(X)

ht(ω) = ω ◦ τ ◦ deπ vt(ω) = ω − ht(ω)

Guillemin and Sternberg [8] prefer to think of the contact structure as TE-valued 1-forms on

J1π. To achieve this, they compose the h and v above with d(e,τ)π1,0, where π1,0 : J1π → E.

In local coordinates, the contact structure looks like a pair of (1,1) tensor fields on E,

except that they depend on jet coordinates.

h = dxk ⊗ (
∂

∂xk
+ yA

k

∂

∂yA
) v = (dyB − yB

j dxj)⊗ ∂

∂yB

Depending on interpretation, the expressions above can be the horizontal and vertical pro-

jections for either J1π×E (TE) or J1π×E (T ∗E). They can also be interpreted as TE-valued

1-forms on J1π.

5.1 The Contact Structure viewed from LπE

The contact structure arises on J1π because each 1-jet (e, τ) allows us to decompose TeE

into a direct sum. Similarly, the soldering form arises on LπE because each adapted frame

u = (e, ei, eA) allows us to represent TeE as Rm+k. So the contact structure is analogous to

the soldering form. Recall that

θu(X) = ei(duλ(X))ri + eA(duλ(X))rA = θi
u(X)ri + θA

u (X)rA

and that in local coordinates,

θi = πi
jdxj θA = πA

j dxj + πA
BdyB

13



Consider the following TE-valued one-forms on LπE

θh(u) = θi(u)⊗ ei θv(u) = θA(u)⊗ eA

In local coordinates,

θh = πi
kdxk ⊗ vl

i(
∂

∂xl
+ uA

l

∂

∂yA
) = dxk ⊗ (

∂

∂xk
+ uA

k

∂

∂yA
)

θv = πA
B(dyB − uB

j dxj)⊗ vC
A

∂

∂yC
= (dyB − uB

j dxj)⊗ ∂

∂yB

These objects are strikingly similar to the contact structure of J1π. In fact, they pass to the

quotient to give the contact structure on J1π. The contact structure is known to appear in

“various guises” [17]; the soldering form on LπE is another, perhaps more potent, version.

We also remark that the contact structure falls trivially from the following theorem

Theorem 5.1 Let λ : P → E be a principal fiber bundle with structure group G, let H ⊆ G

be a closed lie subgroup, and let F be a manifold with a left G-action. Then

P ×H F ∼= (P/H)×E (P ×G F )

Proof: First note that by Proposition 5.5 in reference [10], P/H ∼= P ×G (G/H) and

ρ : P → P/H is a principal bundle. So P ×H F is a bundle associated to ρ. This makes

sense–if F has a left G-action then it has a left H-action. The isomorphism map is

(p, f)H 7→ (pH, (p, f)G)

It is well-defined and a smooth diffeomorphism.

Corollary 5.2

LπE ×H Rm+k ∼= J1π ×E TE

LπE ×H (Rm+k)∗ ∼= J1π ×E T ∗E

The natural splitting of the fibers Rm+k and (Rm+k)∗ is H-invariant and passes to the

quotient to form the contact structure.
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6 The Cartan-Hamilton-Poincaré Forms

One associates [8, 7] with a given Lagrangian L on J1π the Cartan-Hamilton-Poincaré (CHP)-

m-form θL, which one may use to reexpress the action integral of the Lagrangian. This form

can be defined directly [8] on J1π, or it can be defined [7] on J1π as the pull back of the

canonical multisymplectic form on J1∗π, the affine dual of J1π. Although the CHP-form on

LπE can be defined in terms of the n-tangent structure on LπE, we will define this form

directly in terms of invariant quantities on LπE. We will first define CHP-1-forms, from

which the CHP-m-form will be constructed.

The fundamental vertical vector fields E∗i
A are given in Lagrangian coordinates in (2.2).

If L : LπE → R is a lifted Lagrangian on LπE, then it is the pull-up under ρ of a Lagrangian

L on J1π. Hence, since ρ∗(
∂

∂uA
i
) = ∂

∂yA
i
, we have

E∗i
A (L) = ui

kv
B
A

∂L
∂uB

k

= ui
kv

B
A

∂ L

∂yB
k

This leads us to the following definition:

Definition 6.1 Let L : LπE → R be a Lagrangian on LπE. The covariant momenta of

L are

P i
A = E∗i

A (L) = (ui
kv

B
A)pk

B

where pk
B = ∂L

∂uB
k

denotes the canonical momenta of the Lagrangian.

Remark Notice that the covariant momenta (P i
A) are globally defined tensorial objects

on LπE, while the canonical momenta (pk
B) = ( ∂L

∂uB
k
) are only defined locally.

We are now in a position to give a global definition of the CHP-form on LπE. We first

define the related 1-forms.

Definition 6.2 Let L : LπE → R be a lifted Lagrangian on LπE, and τ(m) a positive

function of m, the dimension of M . The CHP-1-forms θα
L on LπE are

θi
L = τ(m)Lθi + E∗i

A (L)θA (6.7)

θA
L = θA (6.8)
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Remark The positive function τ(m) in this definition is included to allow for various

theories to occur as special cases. We will see that the choice τ(m) = 1 yields the canonical

theory of Carathéodory-Rund, and τ(m) = 1
m

yields the canonical theory of de Donder-Weyl.

Remark The collection of forms (θα
L) = (θi

L, θA
L), where θA

L = θA, is a modified, or non-

canonical soldering form if L > 0. This follows from the easily verifiable properties

X θα
L = 0 for all α = 1, 2, . . . , n if and only if X is vertical with respect to λ : LπE → E

and R∗
gθL = g−1 · θL.

Working out the local coordinate form of the CHP-1-forms in Lagrangian coordinates we

find

θi
L = −H i

jdxj + P i
AdyA (6.9)

θA
L = PA

j dxj + PA
B dyB (6.10)

where

H i
j = ui

k(p
k
BuB

j − τ(m)Lδk
j ) (6.11)

P i
B = ui

kp
k
B (6.12)

PA
j = −uA

BuB
j (6.13)

PA
B = uA

B (6.14)

We will refer to the H i
j as the components of the covariant Hamiltonian, and to the

P i
B as the components of the covariant canonical momentum. If we define symbols hk

j

by the formula

hk
j = pk

BuB
j − τ(m)Lδk

j (6.15)

then the covariant Hamiltonian (6.11) can be expressed as H i
j = ui

kh
k
j . Setting τ(m) = 1 we

find that hi
j has the form of Carathéodory’s Hamiltonian [2, 16] tensor. Similarly, setting

τ = 1
m

we find that h = hi
i yields the Hamiltonian in the de Donder-Weyl theory [4, 16].

Finally we show how the CHP-1-forms can be used to construct the CHP-m-form on J1π.
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Proposition 6.3 Let (Bi, BA) denote the standard horizontal vector fields of any torsion

free linear connection on λ : LπE → E, and let vol denote the pull up to LπE of a fixed

volume m-form on M . Set voli = Bi vol. Then when τ(m) = 1
m

the m-form

θL := θi
L ∧ voli

passes to the quotient to define the CHP-m-form ΘL on J1π.

Proof The vector fields Bi have the local coordinate form Bi = vα
i

∂
∂zα + V where V is

vertical with respect to λ : LπE → E. Using this and formulas (6.7) through (6.12) one can

show that

θL = −(pj
BuB

j − L) vol + pj
AdyA ∧ (

∂

∂xj
vol)

The right-hand-side is constant on the fibers of ρ : LπE → J1π and is in fact the pull-up

ρ∗(ΘL) of the CHP-m-form ΘL on J1π.

Remark The above geometrical construction of the CHP-m-form is analogous to the geo-

metrical construction given by Guillemin and Sternberg [8].

6.1 The Variational Principle on LπE

We now lift the variational principle from J1π to LπE. This is a simple procedure since we

are using a lifted Lagrangian and only varying a section of π. Let φ : M → E be a section

of π and jφ its 1-jet prolongation to J1π. For any section ξ : J1π → LπE we have that

u = ξ ◦ jφ : M → LπE is a section of π ◦ λ : LπE → M .

The action integral on J1π lifts nicely since L = L ◦ρ.∫
M

jφ∗(L)vol =

∫
M

u∗(L)vol

We recall [7] that the action integral is extremized by φ iff jφ∗(W dΘL) = 0 for all vector

fields W on J1π. However, this condition can be weakened to jφ∗(j(f) dΘL) = 0 for all

vertical vector fields f on E.

Now for any such vertical vector field f , consider its J1π prolongation j(f) and its n-

symplectic Hamiltonian vector field Xf̂ on LπE (also a kind of prolongation). From (4.2)
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we know ρ∗(Xf̂ ) = j(f). From proposition (6.3) we now have Xf̂ dθL = Xf̂ ρ∗(dΘL).

It follows that

u∗(Xf̂ dθL) = jφ∗(j(f) dΘL)

We conclude that the action integral is extremized by φ iff u∗(Xf̂ dθL) = 0 for all vertical

vector fields f on E.

7 The Generalized Hamilton-Jacobi Equation

As an application of our general formalism we derive the Carathéodory-Rund and de Donder-

Weyl Hamilton-Jacobi equations. By analogy with the time independent Hamilton-Jacobi

theory (see, for example, reference [18]) we seek Lagrangian submanifolds of LπE. However,

since the dimension of LπE is in general not twice the dimension of E, a new definition is

needed. For our purposes here we will consider n = m+ k dimensional submanifolds of LπE

that arise as sections of λ. In particular we consider sections σ : E → LπE that satisfy

σ∗(dθα
L) = 0 (7.16)

We will refer to this equation as the generalized Hamilton-Jacobi equation.

Since σ∗(dθα
L) = d (σ∗(θα

L)) the condition (7.16) asserts that the 1-forms σ∗(θα
L) are locally

exact, and we express this as

σ∗(θα
L) = dSα (7.17)

in terms of m + k new functions Sα defined on open subsets of E. For convenience we will

denote objects on LπE pulled back to E using σ with an over-tilde. Thus, for example,

H̃ i
j = H i

j ◦ σ and P̃ i
A = P i

A ◦ σ. Then we get from (6.11)–(6.14) and (7.17)

(a) H̃ i
j = −∂Si

∂xj
, (b) P̃ i

A =
∂Si

∂yA
(7.18)

(a) ũA
BũB

j = −∂SA

∂xj
, (b) ũA

B =
∂SA

∂yB
(7.19)

Recalling that H i
j = P i

BuB
j − τ(m)Lui

j and P i
A are functions of the coordinates xi, yA, ui

j and

uA
i , equations (7.18) can be combined into the single equation

H i
j(x

a, yB, ua
b , u

B
a ,

∂Si

∂yB
) ◦ σ = −∂Si

∂xj
(7.20)
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Similarly combining equations (7.19) we obtain

dSA

dxj
= 0

We next consider special cases of these generalized Hamilton-Jacobi equations.

7.1 The Theory of Carathéodory and Rund

We note from (6.11), (6.12), and (6.15) that H i
j = ui

kh
k
j and P i

A = ui
kp

k
A, where the matrix

of functions (ui
j) is GL(m)-valued. Using the notation P i

j = −H i
j and ũi

j = ui
j ◦ σ we may

rewrite (6.11) and (6.12) in the form

P̃ i
j = −ũi

kh̃
k
j , P̃ i

A = ũi
kp̃

k
A (7.21)

If we take t(m) = 1 then these equations are the equations defining the canonical momenta in

Rund’s canonical formalism for Carathéodory’s geodesic field theory (see equations (1.22),

page 389 in [16], with the obvious change in notation). In this situation equation (7.20)

can be identified with the Rund’s Hamilton-Jacobi equation for Carathéodory’s theory (see

equation (3.29) on page 240 in [16]). We recall [16] that one can derive the Euler-Lagrange

field equations from this Hamilton-Jacobi equation.

In (7.21) we have the result that the arbitrary non-singular matrix-valued functions

(ũi
j) that occur in Rund’s canonical formalism for Carathéodory’s theory have a geometrical

interpretation in the present setting. Specifically they correspond to the coordinates for linear

frames for M . These defining relations are derived from Rund’s transversality condition,

and this condition has the elegant reformulation here as the kernel of (θi
L).

We will say that a vector X at e ∈ E is transverse to a solution surface through e that is

defined by a given Lagrangian L, if X = dλ(X̂), where X̂ ∈ Tu(LπE) satisfies X̂ θi
L = 0,

for some u ∈ λ−1(e). X̂ thus satisfies the equations

0 = −H i
jX

j + P i
AXA = ui

k

(
−hk

j X
j + pk

AXA
)

Xj = X̂(xi) , XA = X̂(yA)

from which we infer

0 = −hk
j X

j + pk
AXA (7.22)
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This is Rund’s transversality condition for the theory of Carathéodory when we take t(m) = 1

(see equation (1.10), page 388 in [16]). The canonical momenta P i
j and P i

A are defined by

Rund to be solutions of

0 = P i
jX

j + P i
AXA (7.23)

when (Xj, XA) satisfy (7.22). Rund’s solutions of these equations are given in (7.21). Look-

ing at (7.21), (7.22) and (7.23) we see that the introduction of the ui
j in (7.21) amounts to

the introduction of the GL(m) freedom for linear frames for M .

7.2 de Donder-Weyl Theory

Returning to (7.20) let us reduce this equation by making several assumptions. We suppose

that L is regular (in the usual sense on J1π), that the section σ is such that ũi
j = δi

j, and we

make the choice t(m) = 1
m

. Now summing i = j in (7.20) we obtain

h̃(xi, yB,
∂Si

∂yB
) = −∂Si

∂xi

where h̃ = p̃i
AũA

i −L̃. This equation is the Hamilton-Jacobi equation of the de Donder-Weyl

theory, as presented by Rund (see equation (2.31) on page 224 in [16]). We recall [16] that

one can derive in this case also the Euler-Lagrange field equations from the de Donder-Weyl

Hamilton-Jacobi equation.

8 Hamilton’s Equations

The structure of equations (6.9) - (6.12) suggests that one should be able to derive generalized

Hamilton equations if the canonical momenta pi
A = ∂L

∂uA
i

can be introduced as part of a local

coordinate system on LπE. Part of the original philosophy used in developing n-symplectic

geometry in reference [12] was to switch from scalar equations to tensor equations, motivated

by the fact that the soldering 1-form is vector-valued. In particular, the basic structure

equation (2.4) in n-symplectic geometry is tensor-valued. We show next that

u∗(η dθi
L) = 0 (8.24)
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where u : M → LπE is a section of π ◦λ, and η is any vector field on LπE, yields generalized

canonical equations that contain known canonical equations as special cases. We consider

here only dθi
L since by Proposition (6.3) it alone is needed to construct the CHP-m-form on

J1π.

We need the following definition in order to introduce the canonical momenta as part of

a coordinate system on LπE.

Definition 8.1 A Lagrangian L on LπE is regular if the (m + k)× (m + k) matrix(
E∗i

A ◦ E∗j
B (L)

)
is non-singular.

Working out the terms of this matrix in Lagrangian coordinates using (2.2) we obtain

E∗i
A ◦ E∗j

B (L) = uj
au

i
bv

E
BvD

A

(
∂2L

∂uE
a ∂uD

b

)
It is clear that this definition is equivalent to the standard definition of regularity on J1π.

We now consider the transformation of coordinates from the set (xi, yA, ui
j, u

A
k , uA

B) to the

new set (x̄i, ȳA, ūi
j, p

j
A, ūA

B) where

x̄i = xi , ȳA = yA , ūi
j = ui

j , ūA
B = uA

B , pi
A =

∂L
∂uA

i

Computing the Jacobian one finds that the new barred functions will be a proper coordinate

system whenever the Lagrangian is regular. For the remainder of this section we shall assume

that L has this property, despite the fact that many important examples (see [7]) have non-

regular Lagrangians. Moreover, for simplicity we will drop the bars on the new coordinates.

In the generalized canonical equation (8.24) we now take η = ∂
∂pi

A
. We find the result

0 =

(
∂Hj

k

∂pi
A

◦ u

)
+ (uj

i ◦ u)

(
∂(yA ◦ u)

∂xk

)
Using Hj

k = uj
ih

i
k and the fact that (ui

j) is a non-singular matrix valued function, this last

equation reduces to

∂hj
k

∂pi
A

◦ u =
∂(yA ◦ u)

∂xk
δj
i
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This is our first set of generalized Hamilton equations. Notice that by summing j = k

in this equation we obtain
∂h

∂pi
A

◦ u =
∂(yA ◦ u)

∂xi
(8.25)

Upon setting t(m) = 1
m

we obtain half of the de Donder-Weyl canonical equations. Under

suitable but complicated conditions these equations, with t(m) = 1, will also reproduce part

of Rund’s canonical equations for the theory of Carathéodory.

In the generalized canonical equation (8.24) we now take η = ∂
∂yA . We find

0 = u∗

(
d(ui

kp
k
A) + ui

k

∂hk
j

∂yA
dxj

)

Using an “over bar” notation to denote objects pulled back to M by u we may write this as

∂

∂xj

(
ūi

kp̄
k
A

)
= −ūi

k

(
∂hk

j

∂yA

)
◦ u (8.26)

This is our second set of generalized Hamilton’s equations.

Notice that what is non-standard in (8.26) is the appearance of the derivatives of the

functions ūi
j = ui

j ◦u. If, however, the section u : M → LπE is such that the ūi
j are constants,

then these equations reduce to
∂(p̄k

A)

∂xj
= −

∂hk
j

∂yA
◦ u

Setting τ(m) = 1
m

and summing k = j in this equation we obtain

∂(p̄i
A)

∂xi
= − ∂h

∂yA
◦ u

These equations, together with equations (8.25) when τ(m) = 1
m

, are the complete canonical

equations in the de Donder-Weyl theory.

9 A Model Theory on LπE

Equation (8.26) clearly suggests that what is needed in this new formalism on LπE are

dynamical equations for the coordinates ui
j of frames for the parameter space M . We note

that our fundamental canonical variables P i
j = −H i

j and P i
A on LπE are functions of the

variables (xi, yA, ui
j, u

A
i ), but they do not depend on the other vertical coordinates uA

B. On
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the other hand the complete set of momentum variables (P i
j , P

i
A, PA

i , PA
B ) defined in (6.11)–

(6.14) depend on all the coordinates on LπE. It is evident that a complete Lagrangian field

theory on LπE would thus need to supply field equations for the coordinates ui
j of frames

for M as well as equations for the coordinates uA
B of vertical frames for E, in addition to

the standard field equations for sections of π. To do this in as simple a way as possible we

introduce the following total Lagrangian:

LTOTAL = LE + LM,V

Here LM,V is a Lagrangian for the ρ-vertical variables ui
j and uA

B, and LE is to be a general-

ization of ρ∗(L) that now includes a coupling to the vertical coordinates.

For an example suppose that π : E → M is a vector bundle over spacetime M . We

can take LM,V to be the Lagrangian for a higher-dimensional Kaluza-Klein metric tensor on

E, but written in n-tuple form using uα
β . The term LE can then be taken to be the usual

Lagrangian for a section of π, but with the usual “fixed” metric tensors now replaced by the

dynamical metric written in terms of n-tuples.

As a second example suppose that π : E → M is a principal bundle over spacetime

M . Then one can take LTOTAL to be a Lagrangian for the Yang-Mills generalization of the

Kaluza-Klein theory as formulated, for example, by Hermann [9].

We note that sections of LM may be considered as 1-jets of non-singular maps from

Rm → M since LM ⊂ J1(Rm, M). Similarly since LV ⊂ J1(Rk, E), sections of LV may

be considered as 1-jets of maps from Rk → E. From a jet bundle point of view we may

therefore consider the total Lagrangian LTOTAL as defined on a subset of the space

J1π ×E (J1(Rk, E)×M J1(Rm, M))

It seems clear then that LπE is a natural arena for unified field theories in which the de-

termination of a geometry for M , and a geometry for the fibers of E, are both part of the

dynamical problem. Field equations would produce, for our examples given above, a metric

of the Kaluza-Klein type for tangents to E together with a field (section of π) defined on

M . If one fixes the M and V gauges by reducing H to { I } and thereby reducing LTOTAL

to ρ∗(L), then one arrives at the generalized Lagrangian field theory on J1π lifted to LπE

that was discussed earlier.
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10 Conclusions

In this paper we have reformulated covariant field theory for sections of π : E → M on the

bundle of vertically adapted linear frames LπE. The advantaged gained by this reformulation

is that it allows us to utilize the natural geometry that is supported on LπE, namely n-

symplectic geometry, to further develop covariant field theory. We have concentrated on

demonstrating that LπE with its canonical n-symplectic structure provides an appropriate

arena for formulating covariant field theory, leaving aside the development of the modified

n-symplectic geometry defined by the Cartan-Hamilton-Poincaré (CHP) 1-forms to future

papers.

To this end we showed that covariant field theory on J1π lifts in a natural way to LπE.

The analysis was based on the theorem, presented in section 3, that J1π is a principal fiber

bundle ρ : LπE → J1π over the bundle of 1-jets of sections of π. This theorem was used to

show that the soldering 1-forms θα on LπE play the role of the contact structure on J1π.

The soldering 1-forms and a lifted Lagrangian L = ρ∗(L) were then used to constructed

modified soldering 1-forms θα
L on LπE, the CHP 1-forms. These CHP 1-forms were shown

to pass to the quotient to define the standard CHP m-form on J1π. Further we used the

CHP 1-forms to derive generalized Hamilton-Jacobi and generalized canonical equations on

LπE, and then showed that the Hamilton-Jacobi and canonical equations in the theories

of Carathéodory-Rund and de Donder-Weyl are contained as special cases. What we did

not do was develop the explicit structure of the modified n-symplectic geometry, including

allowable observables, Hamiltonian vector fields, and Poisson and graded Poisson brackets,

that one should be able to define using the CHP 1-forms. Nor did we develop the variational

principle on LπE for a Lagrangian that is not lifted from J1π. These problems we leave to

future publications.

As we studied the structure of LπE it became apparent that the extra degrees of freedom

in LπE that are not in J1π need not be ghost degrees of freedom, but may have direct

physical significance. Part of the extra degrees of freedom, namely coordinates for the frames

of M , were identified with the undetermined elements in the Carathéodory-Rund canonical

formalism. The manifold LπE emerged as a natural arena for a unified theory that contains
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in addition to the sector for sections of π, dynamical sectors for a geometry for M and a

geometry for the fibers of E. In fact it was shown that the manifold LπE is a subset of the

jet space J1π ×E (J1(Rk, E) ×M J1(Rm, M)). We argued in section 9 that one may easily

write down on LπE a model Lagrangian, in n-tuple form, for a type of higher dimensional

Kaluza-Klein theory. We intend to pursue these ideas in future work.
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[2] C. Carathéodory, Über die Variationsrechnung bei mehrfachen Integralen, Acta Szeged

Sect. Scient. Mathem., 4, (1929), 193-216.

[3] M. de León, E. Merino, J. Oubiña, P. Rodrigues, M. Salgado, Hamiltonian systems

on k-cosymplectic manifolds, J. Math. Physics, 39, (1997), 876-893; M. de León, E.

Merino, M. Salgado, k-Cosymplectic manifolds and Lagrangian field theory, preprint;

M. de León, J. Oubiña, M. Salgado, Integrable almost s-tangent structures, Rendiconti

di Matemiatica, Serie VII Volume 14, (1994), 609–623.
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