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ABSTRACT

It is shown that the charged symplectic form in Hamiltonian dynamics of classical

charged particles in electromagnetic fields defines a generalized affine connection on an

affine frame bundle associated with spacetime. Conversely, a generalized affine connection

can be used to construct a symplectic 2-form if the associated linear connection is torsion–

free and the anti-symmetric part of the R4∗ translational connection is locally derivable

from a potential. Hamiltonian dynamics for classical charged particles in combined gravi-

tational and electromagnetic fields can therefore be reformulated as a P (4) = O(1, 3)⊗R4∗

geometric theory with phase space the affine cotangent bundle AT ∗M of spacetime. The

source-free Maxwell equations are reformulated as a pair of geometrical conditions on the

R4∗ curvature that are exactly analogous to the source-free Einstein equations.
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1. Introduction

The problem of geometrizing the relativistic classical mechanics of charged test par-

ticles in curved spacetime is closely related to the larger problem of finding a geometrical

unification of the gravitational and electromagnetic fields. In a geometrically unified theory

one would expect the equations of motion of classical charged test particles to be funda-

mental to the geometry in a way analogous to the way uncharged test particle trajectories

are geometrized as linear geodesics in general relativity. Since a satisfactory unified theory

should contain the known observational laws of mechanics in some appropriate limit, one

can gain insight into the larger unification problem by analyzing the geometrical founda-

tions of classical mechanics.

This paper is concerned with the question of the geometrical unification of the gravita-

tional and electromagentic fields, and accordingly we analyze the geometry of Hamiltonian

mechanics of classical charged particles in electromagnetic fields. We show that the usual

formulation in terms of symplectic geometry on the momentum-energy phase space T ∗M

defines a P (4) = O(1, 3) ⊗ R4∗ generalized affine connection on an affine frame bundle

AM of spacetime M. The resulting affine geometry on spacetime is the geometry of the

recently proposed P(4) geometrical theory of gravitation and electromagnetism (Norris,

1985; Kheyfets and Norris, 1988). The new features of the P(4) theory are that the gauge

group associated with the electromagnetic field is the group R4∗ of momentum-energy

translations, with the Maxwell field tensor playing the role of the R4∗ gauge potential, and

the momentum-energy phase space is the affine cotangent bundle AT ∗M .

There are two standard ways to formulate canonical mechanics for a classical charged

particle in an electromagnetic field in spacetime. The more familiar method uses standard

Poisson brackets (i.e. the canonical symplectic 2-form on phase space T ∗M) and the gen-

eralized momentum-energy πµ = mgµν ẋν + eAµ. Because the electromagnetic vector po-

tential Aµ occurs explicitly in the definition of πµ the generalized momentum-energy is not

gauge invariant, and this leads to difficulties in physical interpretation. However, no such

problem arises with the spacetime equations of motion derived from the canonical equa-

tions because they involve only the gauge invariant field strengths Fµν = ∇µAν −∇νAµ.
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To avoid the difficulties with interpretation one may use an alternative method (Torrence

and Tulczyjew, 1973; Sniatycki, 1974;Woodhouse, 1980) in which the momentum-energy

variable πµ is the gauge-invariant kinetic momentum–energy mgµν ẋν , but then one must

also use nonstandard Poisson brackets (i.e. the “charged” symplectic 2-form). In addition

this alternative approach employs the “free-particle” Hamiltonian H = 1
2m (m2 +gµνπµπν)

even though the particle in question is a charged particle.

The transformation between these two formulations is the non canonical transfor-

mation πµ −→ π̃µ = πµ + eAµ, which is the well-known “substitution rule” of elementary

mechanics. When this transformation is treated as a momentum-energy translation one

must generalize the usual definition of phase space coordinates in terms of linear frames

and use affine frames instead. This leads from Gl(4) covariance to A(4) = Gl(4) ⊗ R4∗

covariance and means that the bundle of linear frames, the geometrical arena for the linear

Riemannian geometry of general relativity, is replaced by the bundle of affine frames. A

generalized affine connection on AM may be thought of (Kobayashi and Nomizu, 1963)

as composed of a pair (Γ,K) where Γ is a linear connection and K, a (0,2) tensor field

on spacetime, represents the R4∗ translational part of the connection. We show that the

charged symplectic form defines an affine connection on AM with the electromagnetic field

tensor playing the role of the R4∗ part of a P(4) affine connection, while the linear geometry

is the Riemannian geometry of spacetime.

In Section 2 we show how the charged symplectic form Sc is related to momentum-

energy translations, and how one may extract from Sc a definition of a vector bundle

affine connection on T ∗M . Then in Section 3 vector bundle affine connections are related

to affine connections on AM. In the process we find that it is natural to generalize the

phase space of classical charged particles in electromagnetic fields from T ∗M to the affine

cotangent bundle AT ∗M .

In Section 4 we reverse the process and find necessary and sufficient conditions for

an arbitrary affine connection on AM to define a symplectic structure on AT ∗M . The

conditions are: (1) the associated Gl(4) linear connection must be torsion free, and (2) the

skew–symmetric part of the R4∗ translational connection must be locally derivable from a

potential.
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In Section 5 we use the results developed in earlier sections to reinterpret the canonical

mechanics of charged particles on AT ∗M in terms of P(4) affine geometry on AM. We first

show that the Hamilton equations of motion on spacetime, the Lorentz force law, can

be reinterpreted as the equation of an affine geodesic on M with respect to the natural

affine connection on AM induced by the charged symplectic form. We then complete the

reinterpretation by showing that the Maxwell equations for the source–free electromagnetic

field have a natural geometrical formulation in terms of the R4–curvature tensor that

is remarkably parallel to the geometric vacuum Einstein equations. In an appendix we

provide the basic material on the affine frame bundle and related associated bundles that

is needed in Section 3.

The standard affine frame bundle AM of a manifold M consists of all triples (p, eµ, t) ,

where p ∈ M , (eµ) is a linear frame at p, and t is a tangent vector at p (Kobayashi and

Nomizu, 1963). The structure group of AM is the affine group A(4) = Gl(4) ⊗ R4 with

group multiplication

(A1, ξ1) · (A2, ξ2) = (A1A2, A1 · ξ2 + ξ1) , ∀ (A1, ξ1), (A2, ξ2) ∈ A(4) .

In this paper we consider the momentum–energy of a particle as being a covariant quan-

tity, and in order to deal with affine covariant vector fields on a manifold in a natural way

we will consider in place of AM a modified affine frame bundle ÂM . The points of ÂM

are triples (p, eµ, β) , where p ∈ M , (eµ) is a linear frame at p, and β is a covector

at p. The structure group of ÂM is the affine group Â(4) = Gl(4) ⊗ R4∗ with group

multiplication

(A1, ξ1) · (A2, ξ2) = (A1A2, ξ1 ·A2 + ξ2) ,∀ (A1, ξ1), (A2, ξ2) ∈ Â(4) .

Â(4) is isomorphic to the opposite group of A(4) . Both AM and ÂM contain the linear

frame bundle of M as subbundles, so that the linear differential geometry of a manifold

may be described using either affine bundle. In order to deal with affine covariant vector

fields in an efficient way we will work with ÂM rather than with AM. However, in order
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to simplify notation we will refer to ÂM as the affine frame bundle of M and denote it

simply by AM. Similarly we will write A(4) for Â(4) and denote by P(4) the Poincarè

subgroup O(1, 3)⊗R4∗ of Â(4).

2. The R4∗ Affine Connection Defined by the Charged Symplectic 2-form

The momentum-energy phase space for Hamiltonian dynamics of a single particle in

flat spacetime (M,g) is the cotangent bundle T ∗M
proj−→ M . proj is the projection map

proj(p, β) = p for β a covector at p ∈ M . Coordinates yi = (qµ, πν), i = 1, . . . , 8 , µ, ν =

1, . . . , 4 , on T ∗M are standardly defined in terms of coordinates xµ and the associated

linear frame field (eµ) = ( ∂
∂xµ ) on M by

(yi)(p, β) = (qµ, πν)(p, β)

= (xµ(p), β(eν(p))) .
(1)

In this definition qµ = (proj)∗(xµ), while the vertical coordinates πν are the real-valued

functions on T ∗M defined by

πν(p, β) := β(eν(p)) (2)

for p → β(p) a section of T ∗M .

The canonical symplectic form on T ∗M is the 2-form S := dθ where θ is the

canonical 1-form defined invariantly by θ(p,β)(X) = β((proj∗X)(p)) for X a vector field

on T ∗M . In the local coordinates (qµ, πν) S takes the form

S = dπµ ∧ dqµ . (3)

The free particle dynamical system is defined by S and the Hamiltonian H : T ∗M → R

given by

H(qµ, πν) :=
1

2m
[m2 + gµνπµπν ] . (4)

The gµν in (4) are the components of the spacetime metric tensor and take the form

diag(−1, 1, 1, 1) in flat spacetime when the spacetime coordinates xµ are Lorentzian coor-

dinates and the linear frame (eν) is an orthonormal (O.N.) linear frame field on M.
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The Hamiltonian vector field XH on T ∗M determined by a Hamiltonian H is the

unique solution of the equation

dH = −XH S . (5)

The hook product is defined for a 2-form ω ∧ λ and a vector field X by X (ω ∧ λ) =

ω(X)λ− λ(X)ω.

The differential equations for the integral curves of XH determined by (4) are the pair

of Hamilton equations

q̇µ =
∂H
∂πµ

=
πνgνµ

m
, (6− a)

π̇ν = − ∂H
∂qν

= 0 . (6− b)

Combining these phase space equations in the usual way leads to the spacetime free particle

equations of motion

ẍµ = 0 . (7)

The standard prescription for introducing the electromagnetic interaction is to intro-

duce the electromagnetic vector potential A = Aµeµ via the “substitution rule”

πν −→ π̃ν = πν + eÂν , Âν := proj∗(Aν) . (8)

On phase space T ∗M this may be considered as the coordinate transformation

(qµ, πν) −→ (q̃µ, π̃ν) = (qµ, πν + eÂν) . (9)

This transformation is clearly a vertical translation along the fibers of T ∗M , and it is in-

compatible with the definition of coordinates given above. Recall that πν(p, β) = β(eν(p))

where (eν) is a linear frame field. Under change of linear frame (eµ) → (ẽµ) = (eλaλ
µ) with

(aλ
µ) ∈ O(1, 3) the coordinates yν+4 = πν undergo linear homogeneous transformations,

while (9) is inhomogeneous.

To allow for the translations (9) we use affine frames (see the Appendix ) to generalize

the definition of the coordinates πν . An affine frame field on M is denoted by (eµ, t) where

(eµ) is an O.N. frame field and t is a covector field on M, the origin of the affine frame.
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Define affine coordinates yi , i = 1, . . . , 4, by qµ = (proj)∗(xµ) as in (1), and for

i = 5, . . . , 8 by

πµ(p, β) = (β − t(p))(eµ(p))

= β(eµ(p))− tµ(p) .
(10)

Let (eµ) denote the coframe dual to (eµ) . Then under the change of affine frame

(eµ, t) −→ (ẽµ, t̃) = (eλaλ
µ, t− ξλ(a−1)λ

νeν) , (aλ
µ, ξλ) ∈ P (4) , (11− a)

the transformation law for coordinates (qµ, πν) is

(qµ, πν) −→ (q̃µ, π̃ν) = ((a−1)µ
λqλ, aλ

νπλ + ξν) . (11− b)

The coordinate translations (9) are well-defined with respect to these affine coordi-

nates. In particular the coordinates (q̃µ, π̃ν) = (qµ, πν + eÂν) in (9) are defined by the

affine frame (eµ, eAν) if (qµ, πν) are defined by (eµ, 0). In Section 3 we will see that this

generalization means that we have in fact replaced T ∗M with AT ∗M , the affine cotangent

bundle.

Transforming the Hamiltonian H given in equation (4) to new coordinates (q̃µ, π̃ν)

using the momentum-energy translation (9) we get

H(q̃µ, π̃ν − eÂν) = H̃(q̃µ, π̃ν)

=
1

2m
[m2 + gµν(π̃µ − eÂµ)(π̃ν − eÂν)] .

(13)

We obtain this Hamiltonian whether we use the “substitution rule” or the coordinate

transformation interpretation.

To complete the charged particle system we must choose a new sympletic 2-form S̃

defined by

S̃(q̃µ, π̃ν) = dπ̃µ ∧ dqµ . (14)

The 2-form S̃ is one representation of the “ charged” symplectic form (c.f. equation (21))

( Torrence and Tulczyjew, 1973; Sniatycki, 1974;Woodhouse, 1980).

The equations that follow from

dH̃ = −XH̃ S̃ (15)
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are now the well-known Hamilton equations

d

ds
(q̃µ) =

1
m

gµν(π̃ν − eÂν) ,

d

ds
(π̃ν) =

e

m
(∂νÂλ)(π̃λ − eÂλ) .

(16)

These equations combine to give the Lorentz force law

ẍµ =
e

m
Fµ

λẋλ (17)

on spacetime, where Fµ
λ = ∇µAλ −∇λAµ is the (1,1) form of the Maxwell field tensor.

We observe that the choice (14) means that the coordinates (q̃µ, π̃ν) are canonical

coordinates for the charged particle system. Had we not introduced the new symplectic

form S̃ , but merely transformed S to new coordinates using (9) as we did with H, we

would have found (F̂ := proj∗(F ))

S(q, π) = S(q, π̃ − eÂ)

= dπ̃µ ∧ dqµ − e

2
F̂µνdqµ ∧ dqν

= S̃ − e

2
F̂ .

(18)

Thus the coordinates (q̃µ, π̃ν) = (qµ, π̃ν) are non-canonical with respect to S. Note that

since the Hamiltonian equations are coordinate independent, (13) and (18) would lead to

equation (7) rather than equation (17).

Since we now have the momentum-energy phase space coordinates tied to affine frames

we can transfer characteristic properties from the coordinates to the affine frames that

define them. We will refer to (eµ, eA) as a canonical affine frame and to (eµ, 0) as a

non-canonical affine frame (Kheyfets and Norris, 1988) for the charged particle system.

We can now transform back to the non-canonical coordinates (qµ, πν) defined by (eµ, 0)

using the P(4) affine transformation inverse to (9), namely

π̃µ −→ πµ = π̃µ − eÂµ . (19)

Using (19) in (13) and (14) we find

H̃(q̃, π̃) = H̃(q, π + eA)

= H(q, π)

=
1

2m
[m2 + gµνπµπν ] ,

(20)
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and
S̃(q̃, π̃) = S̃(q, π + eA)

= S +
e

2
F̂

= dπµ ∧ dqµ +
e

2
F̂µνdqµ ∧ dqν .

(21)

This two-form S̃ is the “charged” symplectic form ( Torrence and Tulczyjew, 1973; Sni-

atycki, 1974;Woodhouse, 1980). .

Thus although the coordinates (qµ, πν) defined by (eµ, 0) are non-canonical for the

charged particle system, the Hamiltonian is in free particle form when espressed in terms

of them. An interpretation has been given (Kheyfets and Norris, 1988) of this free par-

ticle Hamiltonian in terms of the instantaneously comoving inertial frames used in the

operational definition of the Lorentz force law.

We have the situation that S̃ is in canonical form (14) relative to (eµ, eA) but in

non-canonical form (21) relative to (eµ, 0). Define 1-forms Cµ on T ∗M by

Cµ := dπµ −
e

2
F̂µνdqν . (22)

The symplectic 2-form S̃ can now be expressed relative to (qµ, πν) as

S̃ = Cµ ∧ dqµ . (23)

We will see below that the Cµ define an R4∗ affine connection. Accordingly we can refer

to coordinates (qµ, πν) as covariant canonical coordinates, the covariance referring to

P(4) transformations (11).

Since dF = 0 for a Maxwell field we verify easily that S̃ is closed:

dS̃ = dCµ ∧ dqµ =
e

2
dF̂ = 0 . (24)

However dCµ 6= 0 generally since

dCµ =
e

2
∂[αF̂β]µdqα ∧ dqβ . (25)

The 1-forms Cµ are exact if and only if the electromagnetic field is covariant constant

(static and uniform) on Minkowski spacetime (Norris, 1985).
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The significance of (22) is due to the following theorem (Hermann, 1975). Let θµ

denote 1-forms defining an Ehresmann connection on the vector bundle T ∗M . In an affine

coordinate system (qµ, πν) these 1- forms have the general form

θµ = dπµ − fµνdqν (26)

where the fµν are 16 arbitrary functions on T ∗M . In the theorem that follows an affine

connection on T ∗M is an Ehresmann connection that defines affine (i.e. linear, inhomoge-

neous) maps between the fibers of T ∗M by parallel transport.

Theorem:(Hermann,1975) The functions fµν on T ∗M determine an affine connection for

T ∗M
proj−→ M if and only if they are of the inhomogeneous-linear form

fµν = Bµν(q) + Bλ
µν(q)πλ (27)

where the (Bµν , Bλ
µν) are pull backs of functions on M, which uniquely determine the

affine connection. Conversely, such functions can be given arbitrarily, and then determine

an affine connection.

Introduce connection 1-forms ωµ and ων
µ by

ωµ := Bνµdqν ,

ων
µ := Bν

λµdqλ .
(28)

From (26) - (28) we get for the general form of affine connection 1-forms on T ∗M

θµ = dπµ − ωµ − ων
µπν , (29)

where ωµ and ων
µ are pull backs under proj of 1-forms on M. Comparing (22) with (29)

using (28) we find that the Cµ define an affine connection on T ∗M with

ωµ =
e

2
F̂µνdqν , (30)

ων
µ = 0 . (31)

10



3. Generalized Affine Connections on AM

The affine connection just described is a vector bundle affine connection (Hermann,

1975) on T ∗M . We show in this section that it corresponds to a generalized affine con-

nection on the affine frame bundle AM, and that phase space with electromagnetic fields

should accordingly be considered as the affine cotangent bundle AT ∗M rather than T ∗M .

The reader is referred to the appendix for details relating to the affine frame bundle of a

manifold and related associated bundles.

In the appendix we recall the fact that the bundles E1 = LM ×GL(4) R4∗ and E2 =

AM ×A(4) R4∗ associated to LM and AM , respectively, are isomorphic with T ∗M . The

bundle E2 is the affine cotangent bundle. If one is concerned only with the invariant

representation of covectors on spacetime then T ∗M is sufficient , and E1 and E2 need not be

considered. However, in physical applications one wants to keep track of the components of

covectors and the frames that define the components, and for such purposes the associated

bundles E1 and E2 are especially useful. In particular, let us reconsider the theorem on

affine connections on T ∗M quoted in the last section.

The assumptions of the theorem require a coordinatization of T ∗M by affine coordi-

nates, and not simply linear coordinates. In the appendix it is shown (cf. equation A-13)

that in order to introduce affine coordinates on T ∗M one needs the identification of E2

with T ∗M ; hence in order to discuss the geometry of affine connections on T ∗M we also

need the identification of E2 with T ∗M . If we consider the affine connection 1-forms θµ

given in (29) as defined on E2 = AT ∗M , then we can compare this connection with affine

connections on AM.

A generalized affine connection (Kobayashi and Nomizu, 1963) on AM is an a(4) =

gl(4)⊕R4∗ – valued 1-form ω satisfying the connection transformation law

R∗(a,ξ)ω = ad(a, ξ)−1 · ω . (32)

Here R(a,ξ) denotes right translation on AM by (a, ξ) ∈ A(4) and ad denotes the adjoint

action of A(4) on its Lie algebra a(4). Let (U, xµ) be a coordinate chart on M and t a
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covector field on U . Then the section σ : U → AM defined by

σ(p) = (p,
∂

∂xµ
|p, t(p)) (33)

is an affine frame field on M that defines affine coordinates (qµ, πν) on AT ∗M as in (10).

The components ωσ of ω relative to the affine frame field p → σ(p) are given by

ωσ := σ∗ω = σωL ⊕ σωT . (34)

The direct sum is in the Lie algebra a(4), and the subscripts L and T refer to “linear”

and “translational”, respectively. If we denote the standard basis of gl(4) by (Eµ
ν ) and the

standard basis of R4∗ by (rµ) then ωσ may be expressed as

ωσ = Γµ
νEν

µ ⊕ tKµrµ . (35)

The Γµ
ν = Γµ

λνdxλ are linear connection 1-forms and are independent of the origin t

of the affine frame, while the translational connection 1-forms tKµ = tKµνdxν have left

superscripts to indicate the dependence of the components of ωT on the origin of the affine

frame. If p → σ̄(p) = (p, eµ, s) is another affine frame field on U then the components sKµ

are related to the components tKµ by the R4∗ connection transformation law (Hermann,

1975; Norris, 1985)

sKµν = tKµν +∇ν(sµ − tµ) . (36)

Finally, from a variant of a theorem in differential geometry (Kobayashi and Nomizu, 1963)

we know that affine connections on AM are in 1:1 correspondence with pairs (Γλ
µν , tKµν)

defined as above.

To understand in a simple way how a connection on AM is related to the vector bundle

affine connection given by (29) we compute the covariant derivative of a smooth section

β : M → AT ∗M of the affine cotangent bundle AT ∗M . Associated with β is a unique

function fβ : AM → A4∗ defined by (Kobayashi and Nomizu, 1963)

fβ(p, eµ, t) := (p, eµ, t)−1(β(p)) . (37)
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From equations (10) and (A-13) we see that evaluating this function at an affine frame

(p, eµ, t) is equivalent to finding the coordinates of (p, β(p)) ∈ AT ∗M with respect to the

affine coordinates (qµ, πν) defined by the affine frame. We now compute the covariant

derivative of β in two ways, first using ω on AM and then using the connection 1 forms θµ

on AT ∗M given by (29).

The exterior affine covariant derivative of β with respect to ω is defined in terms of

fβ by

Dfβ := dfβ + ω · fβ . (38)

The “dot” in ω · fβ denotes the action of the Lie algebra a(4) on A4∗ induced by the

standard action given in (A-7). Pulling the A4∗ - valued 1-forms Dfβ back to spacetime

M using the section σ given in (33) and using (34) leads to

σ∗(Dfβ) = d(σ∗fβ) + σωL · (σ∗fβ)− σωT

= d(fβ ◦ σ) + σωL · (fβ ◦ σ)− σωT .
(39)

We introduce the notation tβµ(p) = βµ(p)−tµ(p) for the coordinates of β with respect

to the affine frame field (33). Then since

fβ ◦ σ(p) = πµ(p, β)rµ = (βµ(p)tµ(p))rµ (40)

we may rewrite equation (39) in component form using (35) as

Dtβµ = dtβµ − Γν
µ(tβν)− tKµ . (41)

Evaluating these 1-forms at ∂
∂xν yields the components formula

Dν(tβµ) = ∂ν(tβµ)− Γλ
ν µ(tβλ)− tKνµ . (42)

This is the local coordinate formula for the A(4) covariant derivative of an affine covector β :

M → AT ∗M . The differences between this formula and the formula ∇µβν = ∂µβν−Γλ
µνβλ

for the linear covariant derivative of a covector β : M → T ∗M are due to the extra R4∗

degrees of freedom in AT ∗M .

To evaluate the covariant derivative of β : M → AT ∗M using the affine connection

1-forms θµ given in (29) we evaluate the pull back β∗θµ of the θµ to M. The geometrical
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picture is that when a covector field is thought of as a section of AT ∗M , then the image of

its domain under the map p → (p, β(p)) is a surface in AT ∗M . The β∗θµ are equivalent to

the restrictions of the 1-forms θµ to (vectors tangent to) this surface. From (29) we find

β∗θµ = β∗(dπµ)− β∗ωµ − β∗(ων
µπν)

= d(πµ ◦ β)− β∗ωµ − β∗ων
µ(πν ◦ β) .

(43)

Since
πµ ◦ β(p) = πµ(p, β(p))

= βµ(p)− tµ(p)

= tβµ .

(44)

we may rewrite (43) using (28) and (44) as

β∗θµ = d(tβµ)− β∗ων
µ(tβν)− β∗ωµ . (45)

The statement of the theorem quoted in Section 2 refers to a fixed, but arbitrary,

affine coordinate system, and as such the notation used in the theorem is somewhat in-

complete. The connection 1-forms ωµ must also transform according to the rule (36). We

will therefore write tωµ in place of ωµ to indicate the dependence on choice of origin of

the affine frame. According to the theorem of Section 2 the 1-forms ων
µ and tωµ are pull

backs under proj
AT

of 1-forms on M. Define 1-forms γν
µ and tkµ on M by

ων
µ := proj∗

AT
(γν

µ) , (46− a)

tωµ := proj∗
AT

(tkµ) . (46− b)

Since proj
AT
◦ β = id | M , equation (45) can be reexpressed as

β∗θµ = d(tβµ)− γν
µ(tβν)− tkµ . (47)

Comparing this equation with equation (41) leads to the identification

Γν
µ = γν

µ (48− a)

tKµ = tkµ (48− b)
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Since the pair (γν
µ, tkµ) defines an affine connection on AT ∗M , and (Γν

µ, tKµ) de-

fines an affine connection on AM, equations (48) gives a correspondence between affine

connections on these two bundles.

In order to apply this correspondence to the affine connections (29)-(31) based on

the charged symplectic form given in (21), we recall that (21) was defined relative to the

non-canonical affine frame field (p, eµ(p), 0). Thus we rewrite (29)-(31) as

0θµ = dπµ − 0ωµ − ων
µπν , (49)

0ωµ =
e

2
F̂µνdqν , (50)

ων
µ = 0 . (51)

From equations (48)-(51) we may infer the following result. The charged symplectic

2-form in special relativistic symplectic mechanics defines an affine connection on the affine

frame bundle AM of flat spacetime. The Maxwell field tensor, thought of as the covector-

valued 1-form (Fµνdxν) ⊗ dxµ, plays the role of the R4∗ part of the connection, and the

linear part is the flat Minkowski connection. Generalizing to a curved spacetime the linear

part of the affine connection would correspond to the Riemannian linear connection, and

in place of (51) one would find the ων
µ being given by the 1-forms of the Levi-Civita

connection.

4. Symplectic Structure from an Affine Connection on AM

In Sections 2 and 3 we saw how to use the charged symplectic 2-form on AT ∗M to

define a generalized affine connection on the affine frame bundle of Minkowski spacetime.

We now reverse the process and find the conditions that a generalized affine connection on

AM define a symplectic structure on AT ∗M .

Let ω denote a generalized affine connection on AM, with components (Γµ
ν , tKλ) given

by (35) relative to the affine frame field (33). Consider the connection 1-forms tθµ defined

on AT ∗M by
tθµ = dπµ − tKµ − Γν

µπν . (52)
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To avoid excessive notation in the following formulas we are here abusing notation slightly

by assuming that Γ and tK are defined on AT ∗M . Define the linear and translational

curvature 2-forms Ων
µ and tΦµ by (Kobayashi and Nomizu, 1963; Hermann, 1975)

Ων
µ = Ωλκµ

νdqλ ∧ dqκ = dΓν
µ + Γν

ξ ∧ Γξ
µ (53)

tΦµ = tΦµλκdqλ ∧ dqκ = d(tKµ)− Γν
µ ∧ tKν . (54)

The transformation law for the translational curvature 2-forms under the change of origin

(p, eµ, t) → (p, eµ, t + ξµeµ) is

sΦµ = tΦµ − Ων
µξν . (55)

The torsion 2-forms Tµ of the linear connection Γ may be expressed in the following

various ways:
Tµ = Tµ

λ κdqλ ∧ dqκ

= Γµ
[λκ]dqλ ∧ dqκ

= Γµ
λ ∧ dqλ .

(56)

In Section 2 it was shown that the charged symplectic 2-form can be rewritten as

S̃ = Cµ ∧ dqµ , and that Cµ = dπµ − e
2Fµνdqν can be identified with the 1-forms of the

translational part of a generalized affine connection on AM. Suppose now that we start

with a generalized affine connection on AM and use it to induce 1-forms tθµ of a vector

bundle affine connection on AT ∗M . These 1-forms tθµ can then be used to define a 2-form

S := tθµ ∧ dqµ on AT ∗M . What are the necessary and sufficient conditions that the tθµ

must satisfy in order that S be a symplectic form on AT ∗M? Inserting the expressions

given in (52) for the tθµ we obtain

S = tθµ ∧ dqµ

= dπµ ∧ dqµ − tKµνdqµdqν − Γν
λµdqλ ∧ dqµπν .

(57)

Decompose tKµν as
tKµν = tFµν + tHµν , (58)

where
tFµν := tK[µν] (59− a)

16



tHµν := tK(µν) . (59− b)

Now (57) may be rewritten using (56), (58) and (59) as

S = dπµ ∧ dqµ − tFµνdqµ ∧ dqν − Tµπµ

= SC − tF − Tµπµ .
(60)

Thus only the antisymmetric part tFµν of tKµν and the torsion Tµ of Γν
µ enter into the

definition of S.

Theorem: The 2-form S = tθµ ∧ dqµ defines a symplectic 2-form on AT ∗M if and only if

(a) the associated linear connection is torsion free, and (b) d(tF ) = 0.

Proof: Computing the exterior derivative of S = tθµ ∧ dqµ using (60) yields

dS = −d(tFµν) ∧ dqµ ∧ dqν − (dTµ)πµ − Tµ ∧ dπµ . (61)

Suppose that S is a symplectic 2-form so that both sides of (61) vanish identically. Then

by linear independence the last term on the right hand side must vanish seperately since

it is the only term that contains a factor of dπµ. This implies that

Tµ = 0 , (62)

so the associated linear connection is torsion free. The vanishing of the remaining terms

on the right hand side of (61) now imply

d(tF ) = 0 , (63)

as was to be shown.

Conversely, suppose S = tθµ ∧ dqµ and the components of tθµ satisfy (62) and (63).

Then from (61) we get dS = 0. The non-degeneracy of S follows from the structure of S

and the tθµ.

Condition (b) of the theorem implies that locally tFµν = tK[µν] is derivable from a

potential:
tFµν = ∂µ(tAν)− ∂ν(tAµ) . (64)
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Since the tensor tK that represents the translational part of the affine connection depends

explicitly on the origin of the affine frame field, it may appear that d(tF ) = 0 may hold

with respect to one origin field t, but not with respect to another origin field. That this is

not the case can be seen from the following argument.

It is well-known that the curvature 2-forms Ωµ
ν of a torsion–free linear connection

satisfy the identity

Ωµ
ν ∧ dqν = Ωµ

νλκdqν ∧ dqλ ∧ dqκ = 0 . (65)

Using the transformation law (55) we can write

sΦµ ∧ dqµ = tΦµ ∧ dqµ + Ων
µ ∧ dqµξν . (66)

Using (65) in this equation reduces it to

sΦµ ∧ dqµ = tΦµ ∧ dqµ . (67)

This implies that the 3-forms tΦµ ∧dqµ are actually independent of the origin of the affine

frame when the associated linear connection is torsion free. Expressing these 3-forms in

component form we find

tΦµ ∧ dqµ = d(tKµ) ∧ dqµ

= ∂[ν
tKµκ]dqν ∧ dqκ ∧ dqµ

= ∂[ν
tFµκ]dqν ∧ dqκ ∧ dqµ .

(68)

Thus
tΦµ ∧ dqµ = 0 ⇐⇒ d(tFµνdqµ ∧ dqν) = 0 . (69)

The result is that the condition that the 2-form tFµνdqµ ∧ dqν , derived from tKµνdqν ,

be closed is translational invariant. That is to say, if tFµνdqµ ∧ dqν is closed, then
sFµνdqµ ∧ dqν is also closed. We formalize these remarks in the following

Corollary: If a generalized affine connection tθµ has a torsion–free linear part, then the

condition d(tF ) = 0 is independent of the origin of the affine frame.

18



5. P(4) Affine Reinterpretation of Canonical Equations

We have shown that the charged symplectic 2-form on AT ∗M defines the R4∗–part of

a generalized affine connection on the affine frame bundle AM of the spacetime manifold

M. Conversely, if (Γµ
ν , tKµ) is an affine connection such that (a) Γµ

ν is torsion–free and

(b) the 2-form tF derived from tKµ is closed, then we have a prescription for constructing

a charged symplectic 2-form on AT ∗M in which tF plays the role of the Maxwell field

tensor. Thus that part of symplectic mechanics on AT ∗M related to only the symplectic

2-form, that is independent of the choice of Hamiltonian, is related to the geometry of a

class of generalized affine connections on the affine frame bundle of spacetime.

Now in symplectic mechanics one has a Hamiltonian in addition to the symplectic

2-form , and the corresponding canonical equations of motion. In the case we have been

considering, specifically the charged symplectic form (21) together with the Hamiltonian

(20), the equations of motion lead to the Lorentz force law on spacetime. Now that we

know that the charged symplectic form induces a generalized affine connection on AM, we

are led to ask for the geometrical interpretation of the canonical equations of motion

relative to the induced affine connection. The result, which will not be very surprising

to geometers and relativists, is that the Lorentz force law becomes the equation of a

generalized affine geodesic with respect to a generalized affine connection. To show this

we consider the equations of motion that follow from (15),(20) and (21). These equations

can be put into the form

q̇µ =
∂H
∂πµ

, (70)

D̄πµ

Ds
= − ∂H

∂qµ
, (71)

where
D̄πµ

Ds
:=

dπµ

ds
− eFµν q̇ν . (72)

Remarks:

i. The notation D̄πµ

Ds used in (71) and (72) anticipates the result to be established

below that (75) represents the covariant derivative, with respect to an affine

connection, of an affine vector field πµ along the trajectory of the particle.
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ii. It is well–known that when the Hamiltonian is given by (20) the term

∂H
∂qµ

=
1

2m
πλπκ

∂gλκ

∂qµ

on the right hand side of equation (71) brings in the Christoffel symbols of the

metric linear connection. In the usual fashion these terms may first be reexpressed

in terms of q̇µ using (70). The result can then be transferred to the left hand

side of (71) and combined with dπµ

ds to give ∇q̇πµ = dπµ

ds − {κ
µλ}πκq̇λ, the usual

formula for the linear covariant derivative of a vector field along a curve.

iii. The coordinates (qµ, πν) on AT ∗M depend on the choice of affine frame. As

discussed in Section 3 variables that depend on the choice of origin of the affine

frame should carry an addition left superscript to remind us of this fact. Thus

in particular we relabel our coordinates (qµ, πν) as (qµ, tπν), where t denotes the

origin of the affine frame field defining these coordinates. As indicated in Section

3 the charged symplectic form given in the form (21) was defined relative to the

affine frame field (p, ∂
∂xµ (p), 0). Accordingly we shall replace πµ in our formulas

with 0πµ.

When the steps outlined in these remarks are carried out equations (70)–(72) take the

form

q̇µ =
1
m

gµν(0πν) , (73)

D(0πµ)
Ds

= 0 , (74)

where now
(D0πµ)

Ds
=

d(0πµ)
ds

− {κ
µλ}(0πκ)q̇λ − eFµν q̇ν . (75)

Having eliminated the Hamiltonian from the equations of motion we are now in a

position to reinterpret equations (73)–(75) geometrically in terms of affine connections

on AM. Recall first that these equations are defined with respect to the affine frame

field (p, ∂
∂xµ (p), 0). Thus equation (73) defines the components of the affine vector field

π(s) = 0(γ(s)) ⊕ mgµν
dγ̇ν

ds along the trajectory s −→ γ(s) = (xµ(s)) of the particle

(cf. the remark following equation (A-11)). Equations (74) and (75) then imply that the
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Hamilton equations of motion (70)–(72) are equivalent to the equation of an affine geodesic

(Hermann, 1975; Norris, 1985) with respect to the generalized affine connection

(Γµ
ν , 0Kµ) = ({µ

λν}dxλ,−eFµνdxν) . (76)

Note that the translational part of this affine connection on AM is twice that of our earlier

definition (50). We formalize our discussion in the following

Theorem: The equations of motion for the Hamiltonian H = 1
2m (m2 + gµνπµπν) and

charged symplectic form S = dπµ ∧ dqµ + e
2Fµνdqµdqν are equivalent to the equations of

an affine geodesic of the generalized affine connection given in (76).

Finally we wish to make a few remarks concerning the electromagnetic field equations.

The discussion presented so far in this paper has been concerned with the equations of

motion of charged particles in the presence of given external electromagnetic fields, and

not with the Maxwell field equations of the electromagnetic field. However, since we now

know that the Hamilton equations of motion in a curved Einstein–Maxwell spacetime are

equivalent to the affine geodesic equations associated with the generalized affine connection

({µ
λκ},−eFµν), we are led naturally to ask for the geometrical interpretation of the Maxwell

field equations in terms of affine geometry. It has been shown (Norris, 1985) that the

coupled Einstein–Maxwell field equations can be recast as geometrical equations stated in

terms of the P (4) = O(1, 3)⊗R4∗ curvature of the affine connection ({µ
λκ},−eFµν). Here

we will consider only the Maxwell equations, and we refer the interested reader to an earlier

paper (Norris, 1985) for a discussion of the full coupled Einstein–Maxwell equations.

Consider now a generalized affine connection (Γ,K) on AM such that in the affine

gauge (local section of AM) (p, eµ(p), o) the components of the connection are given by

Γµ
λκ = {µ

λκ} , (77)

0Kµλ = −Fµλ . (78)

Here {µ
λκ} denotes the Christoffel symbols of a spacetime metric tensor, and Fµλ is an

arbitrary antisymmetric type (0,2) tensor field on spacetime.
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From equations (54) and (78) we have the following expression for the R4–part of the

affine curvature:
0Φµνλ = ∇ν

0Kµλ −∇λ
0Kµν

= ∇λFµν −∇νFµλ .
(79)

Theorem: The antisymmetric tensor field Fµλ satisfies the source free Maxwell equations

(a) ∇[νFµλ] = 0 and (b) ∇µFµ
λ = 0 if and only if (c) 0Φ[µνλ] = 0 and (d) 0Φµ

.µλ = 0 .

Proof: Suppose that Fµλ satifies the Maxwell equations (a) and (b). Then by using the

antisymmetry of Fµλ it follows that (a) implies (c) and (b) implies (d). Conversely, if the

R4 curvature 0Φµνλ is constructed from the antisymmetric tensor Fµλ as in (79), then it

is easy to check that (c) implies (a) and (d) implies (b).

The geometrical source–free Maxwell equations

0Φ[µνλ] = 0 ,

0Φµ
.µλ = 0

(80)

are thus analogous to the geometric source–free Einstein equations

Rµνλ
µ = 0 . (81)

From the point of view of geometrical structure we may include the Riemannian zero-

torsion identity R[µνλ]
κ = 0 in the Einstein equations and rewrite equations (81) as

R[µνλ]
κ = 0

Rµνλ
µ = 0 .

(82)

The parallel between the affine Maxwell equations (80) and the Riemannian Einstein

equations (82) is now apparent.
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6. Conclusions

The goal of this paper is to provide support for the P (4) = O(1, 3)⊗R4∗ affine unified

theory of gravitation and electromagnetism (Norris, 1985; Kheyfets and Norris, 1988).

This support is provided by the link we have established between the charged symplectic

form in standard Hamiltonian dynamics and affine connections on the affine frame bundle

of spacetime.

When classical point particles are influenced by only the gravitational and electro-

magnetic fields, the classical equations of motion may be derived from the free-particle

Hamiltonian and the charged symplectic form on the cotangent bundle T ∗M of spacetime

M . In Sections 2 and 3 of this paper we have shown that the charged symplectic form de-

fines a generalized P (4) = O(1, 3)⊗R4∗ affine connection on the affine frame bundle AM of

spacetime. Turning things around in Section 4 we found the conditions that a generalized

affine connection (Γλ
µν ,Kµν) on AM must satisfy in order to define a symplectic form on

T ∗M . The conditions are that the associated GL(4) linear connection Γλ
µν must be torsion

free, and the skew-symmetric part K[µν] of the R4∗ translational connection must locally

take the form K[µν] = ∇µAν −∇νAµ for some local covector field Aµ.

In Section 5 we have shown that the classical equations of motion that follow from the

free particle Hamiltonian and the charged symplectic form, that is the Lorentz force law,

may be reinterpreted in affine geometry as the equation of a generalized affine geodesic

with respect to the P(4) affine connection ({µ
λκ},−eFµν) on the affine frame bundle AM

of spacetime. In the affine picture the influence of the gravitational field on classical

particles is the general relativistic interaction characterized by the Riemannian O(1,3)

linear component {µ
λκ} of the generalized affine connection. The new feature in the affine

picture is that the electromagnetic interaction is characterized by the translational part

of the affine curvature, with the electromagnetic field tensor playing the role of the R4∗

component −eFµν of the generalized affine connection.

In addition to this affine geometrization of the classical equations of motion of charged

test particles in combined gravitational and electromagnetic fields, we also showed in Sec-

tion 5 how the source-free Maxwell equations can be geometrized in terms of the R4∗
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affine curvature. The affine geometric Maxwell equations (80) are remarkably parallel in

structure to the Riemannian Einstein equations (82). The full coupled Einstein-Maxwell

equations have been reinterpreted elsewhere (Norris, 1985) in terms of a P(4) affine geom-

etry, and recently a variational principle has been found (Chilton and Norris, 1990) that

yields the P(4) affine Einstein-Maxwell equations.
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APPENDIX.

We need the following facts and notations about the frame bundles of a 4-dimensional

manifold (Kobayashi and Nomizu, 1963). The bundle of linear frames is the principal fiber

bundle LM
proj

LM−→ M whose points consist of pairs (p, eµ) where (eµ) is a linear frame at

p ∈ M . The structure group Gl(4) acts on LM on the right by

(p, eµ) · (aµ
ν ) −→ (p, ẽν) = (p, eµaµ

ν ) ∀ (aµ
ν ) ∈ Gl(4) . (A− 1)

The bundle of affine frames AM is the principal fiber bundle AM
proj

AM−→ M whose

points consist of triples (p, eµ, t) where (eµ) is a linear frame and t is a covector at p ∈ M .

The structure group of AM is A(4) = Gl(4)⊗ R4∗, and its right action is as in (11-a) for

(aν
µ, ξλ) ∈ A(4). The bundle LM can now be identified with a subbundle L0M of AM via

the map γ : LM −→ AM defined by

γ((p, eµ)) = (p, eµ, 0) . (A− 2)

All elements of AM on the same fiber with (p, eµ, 0) can be obtained by the right action of

A(4) on (p, eµ, 0). Thus (p, eµ, 0) −→ (p, eµ, 0) · (aλ
ν , ξν) = (p, eλaλ

µ, ξνeν), where (eν) is the

coframe dual to (eν). These facts together with the map Π : AM → LM, Π(p, eµ, t) =

(p, eµ), defines AM as a trivial R4∗ bundle over LM.

Given a vector space V on which Gl(4) acts on the left via a representation ρ : Gl(4) →

Auto(V ) one may use a standard construction (Kobayashi and Nomizu, 1963) to build the

vector bundle E
proj

E−→ M associated to LM, where E = LM × Gl(4)V . In particular, if

V = R4∗ and ρ(aλ
µ) = ((a−1)λ

µ)), then E1 = LM × Gl(4)R
4∗ may be identified with T ∗M

as follows.

Each point of E1 is an equivalence class [(p, eµ), (ξν)] , with (p, eµ) ∈ LM and (ξν) ∈

R4∗. The equivalence is defined by the action of Gl(4) on LM×R4∗ as follows: (p, eµ, ξν) ∼

(q, ēµ, ξ̄ν) ⇔ p = q and ∃(aµ
ν ) ∈ Gl(4) such that ēµ = eνaν

µ and ξ̄µ = aν
µξν . The

interpretation of the equivalence classes as covectors is very much in the classical vein.

Select a representative pair ((p, eµ), (ξν)) in an equivalence class and construct the covector
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β = ξµeµ at p ∈ M . Ever other member in the equivalence class consists of a frame (p, ēµ)

and the linear components of β relative to that frame. An equivalence class thus represents

a covector at p by pairing off with each linear frame the frame components of the covector.

E1 and T ∗M are therefore isomorphic under the map

[(p, eµ), (ξν)] −→ (p, ξµeµ) , (A− 3)

and we may consider each point u = (p, eµ) ∈ LM as a linear map

u : (R4)∗ −→ (proj
T∗M

)−1(proj
LM

(u)) = T ∗p M , p = proj
LM

(u) . (A− 4)

In the case of the cotangent bundle this map is given explicitly by

(p, eµ)(ξλ) = ξµeµ ∀(ξµ) ∈ R4∗ , (A− 5)

with inverse map

(p, eµ)−1(α) = (α(eµ)) ∀ α ∈ T ∗p M . (A− 6)

We observe that equation (A-6) is equivalent to our first definition (2) of vertical

coordinates πµ on phase space T ∗M for the free uncharged particle. To obtain the gener-

alization (10) that includes the translations (9) we need to generalize E(M,R4∗).

Let A4∗ denote R4∗ with its natural affine structure (i.e. no preferred origin). Then

A(4) acts on A4∗ on the left by

(aµ
ν , ξλ) · (βκ) = ((a−1)µ

κ(βµ − ξµ)) . (A− 7)

Now consider the fiber bundle E2 = AM × A(4)A
4∗ associated to AM via the action

(A-7). We will denote this bundle E2 also by AT ∗M
proj

AT−→ M and refer to it as the affine

cotangent bundle.

A point in E2 is an equivalence class [(p, eµ, t), (ξν)], and the interpretation is as

follows. Select a representative pair ((p, eµ, t), (ξν)) and define the covector

β = (ξµ − tµ)eµ . (A− 8)
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Similarly from another representative ((p, ēµ, t̄), (ξ̄ν)) of the same equivalence class con-

struct

β̄ = (ξ̄µ − t̄µ)ēµ . (A− 9)

If β̄ = β then

ξ̄µ = aν
µξν + ηµ , (A− 10)

where (aν
µ, ηλ) is the unique element of A(4) relating the two affine frames. An equivalence

class in E2 thus represents a covector β at p ∈ M by pairing off each affine frame at p with

the affine components of β with respect to the given frame. E2 and T ∗M are therefore

isomorphic under the map

[(p, eµ, t), (ξν)] −→ (p, (ξµ − tµ)eµ) . (A− 11)

A convenient notation for a point β in E2 is β = t ⊕ tβ , where tβ = β − t is the linear

component of β with respect to the origin t.

Each point w = (p, eµ, t) ∈ AM may now be considered as an affine map w : A4∗ →

AT ∗p M, p = proj
AM

(w), defined by

(p, eµ, t)(ξν) = (p, (ξµ − tµ)eµ) , (A− 12)

with inverse

(p, eµ, t)−1(β) = β(eµ)− tµ . (A− 13)

This mapping is equivalent to the definition (10) of the affine coordinates used for the

charged particle system.

Further developments relating to the mathematical foundations of the affine geometry

underlying the P(4) theory can be found in the paper by R. Fulp (Fulp, 1990).
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