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Abstract. The Bianchi identities for the P (4) = O(1, 3)⊗R4∗ theory of gravita-
tion and electromagnetism are decomposed into the standard O(1, 3) Riemannian
Bianchi identity plus an additional R4∗ component. When combined with the
Einstein-Maxwell affine field equations the R4∗ components of the P(4) Bianchi
identities imply conservation of magnetic charge and the wave equation for the
Maxwell field strength tensor. These results are analyzed in light of the special
geometrical postulates of the P (4) theory. We show that our development is the
analog of the manner in which the Riemannian Bianchi identities, when combined
with Einstein’s field equations, imply conservation of stress-energy-momentum and
the wave equation for the Lanczos H-tensor.



§1. Introduction.

A fundamental feature of the general theory of relativity is that by combining
Einstein’s field equations with the doubly contracted Riemannian Bianchi identity
one obtains an expression for conservation of the stress-energy-momentum tensor.
Thus, as a consequence of the geometrical model of stress-energy-momentum, one
need not inquire under what conditions the stress-energy-momentum tensor is con-
served or what restrictions must be required to make it so. The stress-energy tensor
is conserved automatically as a consequence of the geometry of spacetime. A
second fundamental but perhaps less well known feature of general relativity is
that when the Einstein field equations are combined with the singly contracted
Riemannian Bianchi identity one obtains a wave equation for the rank three tensor
Hλ

µν introduced by Lanczos and which bears his name (Lanczos, 1962). Hence this
wave equation may also be considered a consequence of the geometry of spacetime.
The fact that these two fundamental features of general relativity follow from the
Riemannian Bianchi identities is characteristic of the geometric spirit of Einstein’s
theory.

In this paper we shall consider the Bianchi identities for a geometry which
is more general than the Riemannian geometry of Einsteins’s theory, namely the
affine geometry of the P (4) = O(1, 3)⊗ R4∗ theory of gravitation and electromag-
netism (Norris, 1985; Kheyfets and Norris, 1988; Norris, 1991; Chilton and Norris,
1992). We will show that in the P (4) theory one obtains a conservation law and a
wave equation for the electromagnetic field that parallels those results mentioned
above for the gravitational field, and that these new results also follow from the
translational component of the P (4) Bianchi identity.

The essential new idea in the P (4) theory is to model the 4-momentum spaces
of classical charged particles as affine spaces rather than linear vector spaces. In
order to treat affine vectors on the same footing with vectors one must replace
the O(1, 3) Riemannian geometry of general relativity with P (4) = O(1, 3) ⊗ R4∗

affine geometry. In the resulting affine theory one obtains the Lorentz force law as
the equation for an affine 4-momentum geodesic and, moreover, the Maxwell field
equations are geometrized in terms of the R4∗ component of the P (4) curvature.
The Bianchi identities of the P (4) curvature contain in addition to the Riemannian
Bianchi identities an additional component for the R4∗ curvature. It is our purpose
in this paper to decompose these additional identities and to analyze their physical
content in light of the Einstein-Maxwell affine field equations which are presented
in Section 2. The emphasis of the paper is not only on the relations obtained in this
manner, namely an expression for conservation of magnetic charge and the standard
wave equation for the Maxwell field strength tensor mentioned above, but also on
the fact that these relations occur by virtue of identities in the extended geometry
and thereby achieve a more elevated position in the P (4) theory. Also, there are
a number of structural parallels between the P (4) theory of electromagnetism and
general relativity which we shall point out in the course of the paper.

Section 2 begins with a brief review of the P (4) theory. For a more com-
plete description of the details the reader is referred to earlier works (Norris, 1985;
Kheyfets and Norris, 1988; Norris, 1991; Chilton and Norris, 1992). The bundle
structure is described with particular emphasis on how basic quantities transform
under translational gauge changes. The translational degrees of freedom are used



to model the 4-momentum spaces of classical charged particles as four dimensional
affine spaces. We are thereby enabled to model the Lorentz force law as the equa-
tion for an affine 4-momentum geodesic and in the process we identify the R4∗

part of the P (4) connection as the negative of the Maxwell field strength tensor.
This identification allows the geometrization of the source free Einstein-Maxwell
equations which are then extended to include sources.

Section 3 is primarily concerned with the decomposition of the R4∗ component
of the P (4) Bianchi identities. First the P (4) = O(1, 3) ⊗ R4∗ Bianchi identity on
a P (4) principal fiber bundle is pulled back to the orthonormal frame bundle OM
using the canonical embedding map of OM into AM . The pull backs of the P (4)
curvature and connection forms are then decomposed into their O(1, 3) and R4∗

components. The R4∗ component of the pull back of the P (4) connection is then
further decomposed using the results of Norris, Fulp and Davis (1980). The result-
ing equation is then expressed on spacetime in component form relative to some
general coordinated gauge. This equation is the R4∗ component of the P (4) Bianchi
identity. We then form two contractions of this equation: one contraction of the
equation in standard form and a second contraction of the equation in dual form.
In Section 4, we consider the contraction of the R4∗ component of the Bianchi iden-
tity in dual form in light of the Einstein-Maxwell affine field equations with sources
and find that conservation of magnetic charge is implied as a consequence of the
extended geometry. A parallel is then drawn between this derivation and the anal-
ogous derivation of conservation of stress-energy-momentum in general relativity.
An alternate interpretation is then suggested which depends on a different identi-
fication of the R4∗ component of the P (4) connection. This identification leads to
an expression for the conservation of electric (rather than of magnetic) charge as a
consequence of the geometry of spacetime. The effect of this alternative, however,
is that the Lorentz force law is generalized.

In Section 5 we show that when the R4∗ component of the P (4) Bianchi iden-
tity in standard form is combined with the Einstein-Maxwell affine field equations
one obtains the wave equation for the Maxwell field strength tensor in a curved
spacetime as an identity of the P (4) geometry. It is shown that 4-momentum is
transferred from event to event in spacetime by the production of ripples in the
affine vector field 0̂ which defines the local zeros of affine 4-momentum. Section 6 is
devoted to a comparison between the electromagnetic wave equation as derived in
the P (4) theory and a similar derivation of a wave equation for the Lanczos tensor
mentioned above. With this in mind a decomposition of the R4∗ curvature is given
which is similar in form to the decomposition of the Riemannian curvature tensor
into the Weyl curvature tensor and terms involving only the Ricci tensor, the scalar
curvature and the metric.

A discussion of our results and conclusions are presented in Section 7. Also
included in this section is a table which we use to make a structural comparison
between general relativity, P (4) electrodynamics and standard U(1) electrodynam-
ics.
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§2. The P(4) Theory of Electromagnetism and Gravity.

The geometrical arena of the P (4) theory of gravitation and electromagnetism
is the modified affine frame bundle, ÂM, over a four dimensional spacetime manifold
M. Elements of ÂM are triples (p, eµ, t̂), where p ∈ M, (eµ=1,2,3,4) is a linear frame
at p, and t̂ is an affine cotangent vector, the “origin” of the frame at p. This
modification1 is necessary because we wish to model the 4-momentum spaces of
charged particles as affine spaces2 and the 4-momentum is fundamentally a covector
rather than a vector. The structure group of ÂM is the affine group Â(4) = G`(4)⊗
R4∗ with group multiplication

(A1, ξ1) · (A2, ξ2) = (A1A2, ξ1 ·A2 + ξ2)

for all (A1, ξ1), (A2, ξ2) ∈ Â(4) (Norris, 1991). Since ÂM is bundle isomorphic
to AM, the standard affine frame bundle, we shall simplify the terminology and
notation by referring to ÂM as the affine frame bundle of M and denote it by AM.
Moreover, we will denote by P (4) the Poincaré subgroup O(1, 3)⊗R4∗ of Â(4).

AM is a principal fiber bundle over LM with standard fiber R4∗. We shall refer
to sections of AM over LM as translational gauges. A translational gauge can be
thought of, therefore, as a choice of origin for local 4-momentum affine frames on
M. It can be shown that translational gauges are in one to one correspondence with
covector fields on M (Norris, 1991).

A generalized affine connection on AM can always be specified (Kobayashi and
Nomizu, 1963; Norris, Fulp and Davis, 1980) by a pair (Γ, t̂K) on spacetime, where
Γ is a linear connection and t̂K is a covariant vector valued one-form, where the
left superscript indicates that K is represented in the t̂ translational gauge. If the
linear connection Γ is the Riemannian connection Γg of the metric tensor g then
the pair is said to represent a P (4) connection. Furthermore, the pair (Γg,

t̂K) may
be used to construct the pair (R, t̂Φ) where R is the Riemannian curvature and t̂Φ
is a covariant vector valued 2-form on spacetime, the affine or R4∗ component of
the P (4) curvature. Its components are defined by3

t̂Φµνλ = ∇µ
t̂Kλν −∇ν

t̂Kλµ. (2.1)

Under a translational gauge transformation, t̂ → x̂ = t̂⊕⇀
s , the R4∗ component of

the connection transforms as4

t̂⊕
⇀
s Kµν = t̂Kµν +∇µsν (2.2)

1Ordinarily, the affine frame bundle, AM, is the set of triples (p, ei, t̂) where t̂ is an affine
tangent vector. The structure group of this bundle is A(4) = Gl(4)⊗R4 (Kobayashi and Nomizu,

1963).
2An affine space (Dodson and Poston, 1977) is a triple (S, V, δ) where S is a set, V a vector

space and δ : S × S → V such that, for x̂, ŷ, ẑ ∈ S

(1) δ(x̂, ŷ) + δ(ŷ, ẑ) = δ(x̂, ẑ) and

(2) for all x̂ ∈ S, the map δx̂(ŷ) = δ(ŷ, x̂) is a bijection.

3For a linear connection with torsion t̂Φµνλ
def
= ∇µ(t̂Kλν)−∇ν(t̂Kλµ)+Sµν

σ(t̂Kσλ) where
Sµν

σ = Γ[µν]
σ

4The notation x̂ = ŷ ⊕⇀
s means that

⇀
s = δ(ŷ, x̂) = δx̂(ŷ)
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and therefore, under the same transformation we have

t̂⊕
⇀
s Φµνλ = t̂Φµνλ −Rµνλ

σsσ. (2.3)

If we define the contraction

t̂Φµ
def= gνλ(t̂Φµνλ), (2.4)

then we obtain for it, from equation (2.3), the transformation law

t̂⊕
⇀
s Φµ = t̂Φµ −Rµ

νsν . (2.5)

Physically, we shall model the local 4-momentum spaces of classical charged
particles as four dimensional affine spaces (Norris, 1985). In such a space the
observed 4-momentum must always be expressed relative to some local zero of
affine 4-momentum. By this we mean that the observed 4-momentum is a vector
σ̂⇀
π , such that π̂ = σ̂⊕σ̂ ⇀

π , where π̂ is the affine 4-momentum and σ̂ is the local zero
(i.e. reference) of affine 4-momentum. We assume that there exists a translational
gauge, 0̂, such that, at a point along its trajectory in a non-zero electromagnetic
field, the observed 4-momentum of the charged particle is the same as that of an
instantaneously comoving and freely falling uncharged particle. In other words,
π̂ = 0̂⊕⇀

u , where
⇀
u is the 4-momentum per unit mass of the uncharged reference

particle. We call 0̂ the zero translation gauge (Norris, 1985).

In order to transport the local zero of 4-momentum, defined at any single event
in spacetime, to other events in spacetime, we must utilize an affine transport
law based on the affine covariant derivative constructed from the pair (Γg,

t̂K).
If π̂ is the affine 4-momentum of the charged particle then we say π̂ is affinely
parallel along the trajectory iff D̂π̂

Ds = 0 where D̂
Ds is the affine directional covariant

derivative along the path. Written in the zero translational gauge this definition
becomes (

D̂π̂

Ds

)µ

=
Duµ

Ds
+ ε(0̂Kµ

λ)uλ = 0, (2.6)

where D/Ds is the linear directional covariant derivative and ε is the electric charge
to mass ratio of the particle. In order to be compatible with Riemannian geometry
it can be shown (Norris, 1985), using the fact that d

ds [
⇀
u · ⇀

u ] = 0, that 0̂K(µν) =
0. Consequently, if we identify 0̂K with the negative of the electromagnetic field
strength tensor we obtain the equation

Duµ

Ds
− εFµ

νuν = 0. (2.7)

Thus in the P (4) theory the Lorentz force law arises as the equation describing an
affine 4-momentum geodesic.

In making the identification 0̂K = −F we have implicitly assumed that F
is the field strength tensor of standard U(1) electromagnetism; that is, that F is
the curl of a vector field A and therefore that magnetic charges are not allowed.
On the otherhand, the only requirement that we have for 0̂K is that 0̂K(µν) = 0.
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Consequently there is a more general form available for 0̂K which is based on two
potentials (Cabibbo and Ferrari, 1962), namely:

0̂Kµν = −(Fµν + M∗
µν) ≡ −F̂µν (2.8a)

where

Fµν = ∇µAν −∇νAµ (2.8b)
Mµν = ∇µBν −∇νBµ (2.8c)

M∗ in (2.8a) denotes the Hodge dual of M .

The standard Lorentz force law is obtained from (2.6) as a special case when-
ever M∗

µν = 0. On the otherhand, if M∗
µν 6= 0 we may make the identification

0̂K = −F̂ = −(F + M∗), but then F̂ is no longer the field strength tensor of stan-
dard U(1) electromagnetism. Instead F̂ in general represents the electromagnetic
fields produced by both electric and magnetic currents. If this is the case one may
regard equation (2.7) as a generalized Lorentz force law that governs the mo-
tion of an electrically charged test particle in a field produced by both electric and
magnetic currents.

Based on either of these identifications we may write the source-free Einstein-
Maxwell equations in terms of P (4) quantities as (Norris, 1985):

0̂Φµ = 0, (2.9)

0̂Φ[µνλ] = 0, (2.10)

Rµν − 1
2gµνR = 0̂Kµλ

0̂Kν
λ − 1

4gµν
0̂Kλσ

0̂Kλσ (2.11)

We note that equation (2.11) is translationally invariant even though it may appear
that the right hand side is not. We have previously defined (Chilton and Norris,
1992) a difference tensor Pij which is translationally invariant. This tensor is defined

by Pij
def
= t̂Kij− t̂K̄ij ≡ 0̂Kij where t̂K̄ij is a flat R4∗ connection with the property

that 0̂K̄ij ≡ 0. Thus (2.11) may also be written as

Rµν − 1
2gµνR = PµλPν

λ − 1
4gµνPλσPλσ

which is clearly translationally invariant.
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These equations may be extended to include matter sources and both electric
and magnetic currents as follows:

Rµν − 1
2 gµνR = 0̂Kµλ

0̂Kν
λ − 1

4 gµν
0̂Kλσ

0̂Kλσ + Tµν , (2.12)

0̂Φµ = −Jµ (2.13)

and
0̂Φ∗

µ = −J∗
µ, (2.14)

where Tµν , Jµ and J∗
µ represent the nonelectromagnetic parts of the stress-energy-

momentum tensor and the electric and magnetic current densities respectively, and
where we have defined

0̂Φ∗
µ = 1

2ε µ
αβγ 0̂Φαβγ . (2.15)

Note that if we make the identification (2.8) where M∗
µν 6= 0, then J∗

µ need not be
identically zero as required by the Bianchi identity of standard U(1) electrodynam-
ics. We refer to equations (2.12) through (2.14) as the Einstein-Maxwell affine field
equations with sources. Recently it has been shown (Chilton and Norris, 1992) that
these equations are derivable from a P (4) variational principle.

§3. The R4∗ Component of the P (4) Bianchi Identity and its Contrac-
tions.

The P (4) theory may be formulated directly on a subbundle of AM , the
orthonormal affine frame bundle AOM , a principal bundle with standard fiber
P (4) = O(1, 3) ⊗ R4∗. Given a connection ω̂ on this bundle we may write the
Bianchi identity as

D̂Ω̂ = dΩ̂ + ω̂ ∧ Ω̂ ≡ 0, (3.1)

where Ω̂ is the curvature with respect to the P (4) connection. In order to iden-
tify the linear and translational components of objects we pull them down to the
orthonormal frame bundle over spacetime using the canonical embedding map
γ : LM → AM defined by γ(p, eµ) = (p, eµ, 0̂), and split γ∗(ω̂) and γ∗(Ω̂) into
O(1, 3) and R4∗ components (Kobayashi and Nomizu, 1963). We find

γ∗(ω̂) = ωL + ωT (3.2)

γ∗(Ω̂) = ΩL + ΩT (3.3)

where the subscripts L and T refer to the linear (O(1, 3)) and translational (R4∗)
parts, respectively. If these are substituted into the pull back under γ of equation
(3.1), we obtain

γ∗(D̂Ω̂) = DLΩL + DLΩT + ωT ∧ ΩL ≡ 0 (3.4)

where DL means covariant differentiation with respect to the linear component of
the connection, ωL. Note that of the 3 terms on the right hand side of equation
(3.4) the only term which is a o(1, 3)-valued 3-form is the term DLΩL while the
other two terms are R4∗-valued 3-forms. Consequently (3.4) implies not only the
Riemannian Bianchi identity DLΩL ≡ 0, but also

DLΩT + ωT ∧ ΩL ≡ 0. (3.5)
6



Equation (3.5) is the R4∗ component of P (4) Bianchi identity, which we will refer
to as the R4∗ Bianchi identity.

It has been shown (Norris, Fulp and Davis, 1980) that on the orthonormal
frame bundle, the R4∗ component of the P (4) connection may be further decom-
posed as

ωT = ρθ + τ, (3.6)

where ρ is a scalar field, θ is the soldering 1-form on the frame bundle and τ
is an R4∗-valued tensorial 1-form, which is uniquely related to a tracefree type
(0,2) tensor field on spacetime. This decomposition is obtained by noting that
ωT corresponds to a type (0,2) tensor field on spacetime. The ρθ and τ terms
correspond to the trace and trace-free parts of this tensor field, respectively, with
respect to the spacetime metric tensor. When (3.6) is substituted into the structure
equation for the R4∗ curvature, we find that

ΩT = ρΘ + dρ ∧ θ + DLτ, (3.7)

where Θ is the torsion 2-form on the frame bundle. Finally, when (3.6) and (3.7)
are inserted into (3.5) we obtain the identity

DLΩT + τ ∧ ΩL + ρDLΘ + ρΘ ∧ ΩL ≡ 0. (3.8)

In this paper we shall consider only the case when both ρ and Θ are zero and
therefore (3.8) reduces to

DLΩT + τ ∧ ΩL ≡ 0 (3.9)

On spacetime, in a general coordinate gauge, this equation can be written in com-
ponent form as

∇[ µ(t̂Φ)αβ ]
γ −R[µα|

σγ( t̂K)σ|β] = 0. (3.10)

Alternatively, equation (3.10) may be written in dual form as

∇µ( t̂Φ)
∗

µνλ + R
∗

µνλσ ( t̂K)σµ = 0 (3.11)

where we have defined
t̂Φ

∗
µνλ def= 1

2ε
µναβ

( t̂Φ)αβ
λ

(3.12)

and
R

∗
µνλσ def= 1

2ε
µναβ

R
αβ

λσ

. (3.13)

Since the P (4) Bianchi identity involves the affine covariant derivative of affine
tensorial fields, the resulting object is tensorial and therefore translationally in-
variant. Hence the Bianchi identity and the equations that result from it must
be translationally invariant as can be readily verified by the substitution of the
transformation equations (2.2) and (2.3) into equations (3.10) and (3.11). Conse-
quently we may express equations (3.10) and (3.11) in the 0̂ translational gauge
with complete generality as follows:

∇[µ(0̂Φ)αβ]
γ + R[µα

σγF̂|σ|β] = 0 (3.14)
7



and
∇µ( 0̂Φ)

∗
µνλ + R

∗
µνλσ

F̂µσ = 0. (3.15)

We shall now consider contractions of these two equations.

If we contract equation (3.14) on the indices µ and γ we obtain

∇µ∇µF̂αβ − 3
2∇

µ(0̂Φ[αβµ])− 2∇[α
0̂Φβ] = RασF̂σ

β −RβσF̂σ
α +Rαβσ

µF̂σ
µ. (3.16)

where we have used the identity

∇µ
0̂Φαβ

µ = −∇µ∇µF̂αβ − 3
2∇

µ(0̂Φ[αµβ]).

On the other hand, contraction of equation (3.15) on the indices ν and λ results
in the equation

∇µ( 0̂Φ∗
µ) = 0. (3.17)

The second term in equation (3.15) vanishes upon contraction on ν and λ due to
the symmetries of the Riemannian curvature tensor.

§4. Conservation of Charge in the P(4) theory.

When equation (2.14) is substituted into equation (3.17) we obtain

∇µ J
∗
µ ≡ 0. (4.1)

Thus, in the P (4) theory, magnetic charge is conserved as an identity of the geom-
etry. On the other hand, conservation of electric charge has been shown (Chilton
and Norris, 1992) to be a consequence of the symmetries of the P (4) Lagrangian.

Conservation of magnetic charge in P (4) electromagnetism therefore appears
to be the analog of conservation of stress-energy-momentum in general relativity.
While it is not possible to contract the R4∗ component of the Bianchi identity
[equation (3.10)] twice due to the fact that a second contraction must necessarily
be on an antisymmetric pair of indices, one may still draw a parallel between the
derivation of equation (4.1) and an alternative derivation (Synge, 1960) of the
conservation of the stress-energy-momentum tensor in general relativity. Recall
that if one forms the double dual curvature tensor ,

∗Rαβγδ def= 1
4εαβµνεγδλk Rµνλk (4.2)

then the Riemannian Bianchi identity may be written as

∇α
∗Rαβγδ ≡ 0. (4.3)

Contracting the indices β and γ gives

∇α
∗Rαδ = 0 (4.4)

where
∗Rαδ def= gβγ

∗Rαβγδ = Rαδ − 1
2 gαδR. (4.5)
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Using the Einstein field equations one obtains

∇αTαδ ≡ 0. (4.6)

Thus the conservation of stress-energy-momentum in general relativity and the
conservation of magnetic charge in the P (4) theory both are obtained by a single
contraction of the respective Bianchi identities in dual form.

It is important to note that the fact that we have obtained a conservation law
for magnetic charge is ultimately due to the fact that we originally identified the R4∗

connection component in the 0̂ gauge with the negative of the generalized Maxwell
field strength tensor F̂ = F + M∗ (see (2.8)). This was done in order to model the
Lorentz force law of electrically charged particles as an affine 4-momentum geodesic.
However, an alternate approach is available.

Let us define
0̂Kµν

def= −(Fµν + αF ∗
µν) (4.7)

where Fµν is the standard U(1) field strength tensor and α is assumed to be a small
constant. Note that this is equivalent to setting M∗

µν = αFµν in equation (2.8a).
This is a very special case of (2.8) since generally Fµν and M∗

µν are independent.
In this special case we have

0̂Φ∗µ = 1
2εµαβγ( 0̂Φ)αβγ

= 2(∇βF
∗
µβ − α∇β Fµβ).

However ∇β F
∗
µβ = 0 and therefore

∇µ
0̂Φ∗µ = −α∇µ∇β Fµβ = −α∇µJµ = 0.

We see therefore that if we make the identification (4.7) we obtain conservation of
electric charge, rather than magetic charge, as a consequence of the geometry. This
is not completely satisfactory however, since when one inserts (4.7) into equation
(2.6), one obtains

Du

Ds

µ

= ε(Fµ
ν + αFµ∗

ν)uν . (4.8)

The effect of this alternative approach therefore is that the Lorentz force law is
generalized. Equation (4.8) describes the motion of a particle with an electric
charge to mass ratio ε and a magnetic charge to mass ratio αε (Schwinger, 1969).

§5. Electromagnetic Waves in the P(4) Theory.

In order to deduce the physical significance of equation (3.16) we assume the

field equations (2.13) and (2.14) and we also assume that J
∗
µ = 0, which implies

that 0̂Φ[αβµ] = 0. Equation (3.16) therefore reduces to

�F̂αβ −RασF̂σ
β + RβσF̂σ

α

−Rαβσ
µF̂σ

µ = 2∇[αJβ]

(5.1)

9



This is the standard wave equation for the Maxwell field strength tensor in a curved
spacetime, and thus we see that electromagnetic waves occur as an identity of P (4)
geometry. Note that in contrast to the usual version of the electromagnetic wave
equation, that is in terms of the vector potential, this wave equation is expressed
in terms of the manifestly physical E and B fields.

Hence the possiblilty of transferring 4-momentum from one point to another
point via electromagnetic waves occurs as an intrinsic property of the geometry of
spacetime in the P (4) theory. In the P (4) theory an electromagnetic wave appears
as a “rippling” of the affine vector field 0̂ which represents the zero or reference
of affine 4-momentum. In order to see that this rippling does in fact occur due
to the passage of an electromagnetic wave, one must be able to compare the field
at neighboring points in spacetime. This may be accomplished by utilizing the
electromagnetic affine differential transport law first introduced by Norris (1985).

If the 0̂ affine vector field is defined at a point p1 in Minkowski spacetime, then
one may transport it to a neighboring point p2 along any curve γ which joins p1

and p2. The transported zero of 4-momentum will be an affine vector ẑ defined at
p2 given by

ẑ(p2) = 0̂(p2)⊕ [−q

∫
γ

Fλ
κdxκ]

∂

∂xλ

∣∣∣
p2

(5.2)

Alternatively one may write

0λ(p2) = −q

∫
γ

Fλ
κdxκ (5.3)

where
0λ(p2)

def= [δ(0̂(p2), ẑ(p2))]λ (5.4)

is the total 4-impulse imparted to a charge q which is constrained to move along the
path γ. The transported zero of affine 4-momentum is in general a path dependent
quantity that is path independent if and only if 0̂Φµνλ ≡ 0.

To illustrate the rippling of the 0̂ field we consider a simple example. Suppose
an electromagnetic wave of the form

Fλ
κ = F

λ
κ sin[kµxµ],

where F
λ

κ is a constant skew symmetric tensor and kµ is a null vector, passes
the origin of the Minkowskian coordinate system, which we take to be the point
p1 = (0, 0, 0, 0) where the 0̂ field is initially defined. Then we may integrate along
the time line to any point p2 of the form p2 = (t, 0, 0, 0) as follows:

ẑ(p2) = 0̂(p2)⊕
[
− qF

λ
0

∫ t

0

sin(k0x
0)dx0

] ∂

∂xλ

∣∣
p2

= 0̂(p2)⊕
[
q
F

λ
0

k0
cos(kot)

] ∂

∂xλ

∣∣
p2

(5.5)

This result is clearly periodic. A free charged particle initially located at the origin
will begin to oscillate due to the changing of the 0̂ affine vector field. In terms
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of the P (4) theory, this is because a free charged particle must follow an affine
4-momentum geodesic (D̂π̂/Ds = 0) and since π̂ = 0̂⊕⇀

π , if 0̂ changes then
⇀
π , the

observed 4-momentum, must change in just the proper amount to counterbalance
the change in the 0̂ field. This may be compared with the Riemannian geodesic
equation for free uncharged particles. In that case the components of the 4-velocity,
defined relative to any linear frame, must change in just the proper amount to
counterbalance the linear curvature induced change in the reference frame.

The fact that the standard electromagnetic wave equation for the Maxwell
field strength tensor occurs as a geometrical identity in the P (4) theory gives the
P (4) theory one other feature not shared by general relativity, and that feature is
the existence of a practical mechanism within the geometry of the theory which
allows the determination of the null subspaces of local tangent spaces. Although
general relativity predicts the existence of gravitational waves which propagate at
the velocity of light, to date no such waves have been observed, and so, as a matter
of practicality, one must appeal to a non-geometrical source of information, e.g.
electromagnetic waves, to determine the null subspaces. In the P (4) theory one
still must observe electromagnetic waves in order to determine the null subspaces,
but in the P (4) theory the information is built into the geometry. Furthermore,
once the null subspaces have been determined one may determine the metric tensor
of spacetime up to a constant conformal factor (Hawking and Ellis, 1973).

§6. A Comparison with Waves in General Relativity.

In Section 5 we have shown that electromagnetic waves occur as an identity
in the P (4) geometry. As we have mentioned above there is an analogous result
in general relativity, namely the wave equation for the rank 3 tensor field Hαβγ =
−Hβαγ known as the Lanczos spin tensor. This tensor was shown by Lanczos
(Lanczos, 1962) to exist for all Riemannian spacetimes. Furthermore, it can be
said to serve as a potential for the Weyl conformal curvature tensor, Cµναβ , where

Cµναβ = Rµναβ + gµ[αRβ]ν − gν[αRβ]µ − 1
3 gµ[αgβ]νR. (6.1)

Specifically, Lanczos showed that the Weyl conformal curvature tensor can be
rewritten as

Cµναβ = ∇βHµνα −∇αHµνβ +∇νHαβµ −∇µHαβν

+ 1
2 (gµβ(Hνα + Hαν)− gνβ(Hµα + Hαµ)

+ gαν(Hβµ + Hµβ)− gµα(Hνβ + Hβν)),
(6.2)

where we have introduced the notation Hµλ = ∇νHµ
ν

λ. In the above relation we
have also imposed the standard Lanczos “algebraic conditions”, namely H[αβγ] = 0
and Hαβ

α = 0, as well as his “differential condition” ∇νHβγ
ν = 0. The first

contracted Riemannian Bianchi identities in conjunction with relation (6.2) leads
to the following wave equation for Hαβγ :

�Hαβγ + RαµγνHβ
νµ −RβµγνHα

νµ −RαβνµHγ
νµ

+ (Rανµλ gβγ −Rβνµλ gαγ)Hνµλ −Rα
νHγνβ + Rβ

νHγνα −Rγ
νHαβν

= 1
2∇α(Rβγ − 1

6gβγR)− 1
2∇β(Rαγ − 1

6gαγR).

(6.3)
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The above wave equation for the Lanczos tensor is an identity of the Riemannian
geometry. This geometrical identity has physical meaning only when field equations
are assumed. Indeed, if the Einstein equation

Rµν − 1
2gµνR = Tµν (6.4)

is used in (6.3) the right hand side can be rewritten as ∇[αJβ]γ , where Jβγ =
Tβγ − 1/3gβγT represents the gravitational sources for the Lanczos spin tensor.
Clearly these results are analagous to the contraction of the R4∗ component of
the P (4) Bianchi identity as given in (3.16) and its corresponding reduction to a
physically measurable quantity, namely (5.1), which arises when the Maxwell field
equations are imposed. These wave equations arise from Bianchi identities and
suggest a strong parallel between the Weyl and R4∗ curvature tensors.

This analogy can be made more concrete. Recall that all contractions of the
conformal curvature tensor vanish, which follows from the decomposition as given
in (6.1). We can make a similar decomposition of the R4∗ curvature. In a general
translational gauge t̂ we define

t̂Cαβ
γ def= t̂Φαβ

γ +
2
3
δγ
[α(t̂Φ)β] − gγσ(t̂Φ)[αβσ]. (6.5)

As with the Weyl conformal curvature tensor, all traces of t̂Cαβ
γ are zero. Further-

more it satisfies t̂C[αβγ] = 0. In the zero translational gauge we may write 0̂Cαβγ

as
0̂Cαβγ = −1

3
[∇αF̂βγ −∇βF̂αγ +∇γF̂βα −∇γF̂αβ

+ gγα∇σF̂β
σ − gγβ∇σF̂α

σ]
(6.6)

which is similar in form to relation (6.2).

Thus the Bianchi identities lead to wave identities for the “potentials” Hαβγ

and 0̂Kαβ = −F̂αβ of the Weyl and R4∗ curvature tensors, respectively. These
identities become physically significant once the appropriate field equations are
imposed, namely, the Einstein and Maxwell equations, respectively. The above
analysis implies that the R4∗ component of the P (4) connection t̂Kαβ may play a
role in P (4) electrodynamics which is analogous to the role of the Lanczos tensor
Hαβ

γ in standard general relativity.

§7. Conclusions and Discussion.

The fundamental principle of the P (4) theory of gravitation and electromag-
netism is to model the energy-momentum spaces of classical charged particles as
affine spaces. The immediate consequence of this generalization is the geometriza-
tion of the Lorentz force law as the geodesic equation of a generalized geometry
for spacetime: P (4) geometry. As a result of this generalization more physical
phenomena than before are recognized as fundamentally geometrical in character.

In this paper we have been concerned with those phenomena occuring by virtue
of the Bianchi identities for that extended geometry beyond those inherent in the
Riemannian Bianchi identities alone. These are, namely, electromagnetic waves
and conservation of magnetic charge. In both cases we have demonstrated close
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structural parallels between P (4) electromagnetism and General Relativity with
regard to the manner in which their respective identities are obtained.

In Section 3 we formed the contraction of the R4∗ component of the P (4)
Bianchi identities in dual form. When this was combined with the Einstein-Maxwell
affine field equations in Section 4, the result was an expression for the conservation
of magnetic charge. The technique used to achieve this result is closely parallel to
an alternative derivation of the conservation law for the stress-energy-momentum
tensor in general relativity. With a slightly different identification of the R4∗ com-
ponent of the connection (equation (4.7)), the same technique was used to derive
an expression for the conservation of electric charge. The identification, however,
leads to a generalized Lorentz force law (equation (4.8)) that includes a magnetic
charge term. In Section 3 we also formed a contraction of the R4∗ component of
the P (4) Bianchi identity in undualed form, and this yielded in Section 5 the wave
equation for the Maxwell field strength tensor when Maxwell’s equations were as-
sumed. In the P (4) theory electromagnetic waves are interpreted as ripples in the
0̂ affine gauge field, which defines the local zeroes of affine 4-momentum. A free
charged particle experiencing a fluctuation in its zero of 4-momentum must begin
to oscillate relative to inertial frames in order to follow an affine 4-momentum geo-
desic. It is in this manner that 4-momentum is transferred to charged particles by
an electromagnetic wave.

Furthermore, consideration of the transmission of 4-momentum via electro-
magnetic waves in the context of the P (4) theory serves to complete our philosoph-
ical view of the information contained in the Bianchi identities. The Riemannian
Bianchi identities tell us, via Poynting’s theorem, that when the 4-momentum con-
tained in an electromagnetic field is allowed to move through space, the change in
the amount of 4-momentum contained in a volume of space is equal to the flux
of 4-momentum across the boundary. The Riemannian Bianchi identities however
neglect to inform us as to just how the 4-momentum is to be transported, and this
is one service which the R4∗ component of the P (4) Bianchi identities perform:
4-momentum may be transferred via electromagnetic waves.

As we have demonstrated in Section 6 the analog of the electromagnetic wave
equation in general relativity is the wave equation for the Lanczos H-tensor. Fur-
thermore we have shown a decomposition of the R4∗ curvature which is similar to
the decomposition of the Riemannian curvature tensor into the Weyl tensor and
terms depending on the Ricci tensor the scalar curvature and the metric tensor.
These observations may be very significant for the following reason: throughout
this paper and others in the literature the structural similarities between P (4)
electrodynamics and general relativity have been exploited in order to clarify the
interpretation of various aspects of P (4) electrodynamics. In this case, as we have
mentioned, it is the object associated with general relativity, that is the Lanczos
tensor, which is in need of illumination. It is thought by some that the Lanczos
tensor may be fundamentally associated with gravitational radiation, and the par-
allels noted in this paper seem to bear out that interpretation. But is it truly the
R4∗ component of the P (4) connection t̂Kµν which is the analog of the Lanczos
tensor? In order to be certain, one should produce the analog of the Lanczos tensor
by the same method used by Lanczos: a variational principle. It is our intention to
address this issue in future publications.
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Throughout this paper we have pointed out parallels between general relativity
and P (4) electrodynamics. In conclusion, we wish to summarize these similarities
and contrast them with the standard interpretation of electrodynamics as a U(1)
gauge theory. These results are summarized in Table I. Note that in both general
relativity and P (4) electrodynamics there is a three tiered hierarchy of geometrical
objects: the curvature is constructed from the connection and its derivatives and
in certain cases, when the linear geometry is Riemannian or when the generalized
affine connection is expressed in the 0̂ gauge, the connection may be expressed
in terms of a potential or potentials and their derivatives. In contrast, the U(1)
connection Aµ is not constructable from a potential. Furthermore, for both general
relativity and P (4) electrodynamics, sources appear in the field equations at the
level of the respective contracted curvatures, whereas in U(1) electrodynamics,
sources appear at one higher differential order. Thus we see that when viewed
from the perspective of the differential structure of the P (4) theory, gravity and
electromagnetism seem very much alike whereas U(1) electromagnetism seems very
different. In addition P (4) electrodynamics differs fundamentally from the standard
U(1) interpretation of the electromagnetic field in that the P (4) theory is capable
of fully accomodating the two potential formalism of Cabibbo and Ferrari (1962).
Recall that the two potentials in the Cabibbo-Ferrari theory each possess not only
the U(1) gauge freedom, but also they collectively possess the freedom of the so
called mixing transformation.
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