Study Guide for Test #4

- 1. The test will cover the material in Chapter 6 in the textbook Calculus III for Engineers and Scientists by J.E. Franke, J.R. Griggs, and L.K. Norris
- 2. Know the definition of a vector field on a domain in either \mathbb{R}^2 or \mathbb{R}^3 .
- 3. Line Integrals
 - (a) Be able to parameterize line segments in the plane and in space. use Be able to compute the line integral of a function f(x,y,z) along a parametrized curve C.
 - (b) Be able to compute the line integral of a vector field $\vec{F}(x, y, z)$ along a parametrized curve C.
 - (c) Be able to compute the work done by a force $\vec{F}(x, y, z)$ acting on a particle moving along a parametrized curve C.
 - (d) Be able to determine if a vector field $\vec{F}(x, y, z)$ is conservative or not.
 - (e) Given a conservative vector field, be able to find all potential functions for that vector field.
- 4. Surface Integrals
 - (a) Be able to parameterize surfaces S in space.
 - (b) Be able to compute the surface area of a parametric surface.
 - (c) Be able to compute the surface integral of a function f(x,y,z) over a parametrized surface S.
 - (d) Know the definition of "positive orientation" of a boundary curve C with respect to the surface bounded by the curve.
 - (e) Be able to compute the surface integral of a vector field $\vec{F}(x, y, z)$ over an oriented parametrized surface S.