Study Guide for Test \#4

1. The test will cover the material in Chapter 6 in the textbook Calculus III for Engineers and Scientists by J.E. Franke, J.R. Griggs, and L.K. Norris
2. Know the definition of a vector field on a domain in either \mathbb{R}^{2} or \mathbb{R}^{3}.
3. Line Integrals
(a) Be able to parameterize line segments in the plane and in space. use Be able to compute the line integral of a function $f(x, y, z)$ along a parametrized curve \mathcal{C}.
(b) Be able to compute the line integral of a vector field $\vec{F}(x, y, z)$ along a parametrized curve \mathcal{C}.
(c) Be able to compute the work done by a force $\vec{F}(x, y, z)$ acting on a particle moving along a parametrized curve \mathcal{C}.
(d) Be able to determine if a vector field $\vec{F}(x, y, z)$ is conservative or not.
(e) Given a conservative vector field, be able to find all potential functions for that vector field.
4. Surface Integrals
(a) Be able to parameterize surfaces S in space.
(b) Be able to compute the surface area of a parametric surface.
(c) Be able to compute the surface integral of a function $f(x, y, z)$ over a parametrized surface S.
(d) Know the definition of "positive orientation" of a boundary curve \mathcal{C} with respect to the surface bounded by the curve.
(e) Be able to compute the surface integral of a vector field $\vec{F}(x, y, z)$ over an oriented parametrized surface S.
