1. Chapter 1: You should know:
(a) How to add and subtract vectors and multiply a vector by a scalar.
(b) How to compute the magnitude of a vector.
(c) How to make a vector into a unit vector.
(d) How to use the dot product to find angles between vectors and to determine orthogonality of vectors.
(e) How to decompose one vector orthogonally with respect to another vector.
(f) How to use the cross product to produce a vector orthogonal to two given nonparallel vectors.
(g) How to use the cross product to determine if two non-zero vectors are parallel.
(h) How to use the cross product to find the area of a parallelogram spanned by two vectors.
(i) How to find equations of lines and planes. (See the exercises with solutions in section 1.5)
2. Chapter 2: You should know:
(a) The calculus of vector-valued functions (VVFs) (Section 2.1): How to compute limits of VVFs; derivatives and integrals of VVFs.
(b) How to describe a curve C as a parameterized curve in space: i.e. by giving $\vec{r}(t)=<x(t), y(t), z(t)>$ for $a \leq t \leq b$.
(c) The basic quantities defined by a curve, namely:
i. Tangent vector $\frac{d \vec{r}}{d t}$.
ii. Magnitude of tangent vector $\left\|\frac{d \vec{r}}{d t}\right\|$.
iii. The unit tangent vector \hat{T}
iv. The definition of arc length of a curve and the arc length function $s(t)$.
v. The Curvature of a curve κ
vi. The unit normal vector \hat{N}
vii. The unit binormal vector \hat{B}
viii. The orthogonal decomposition of the acceleration $\vec{r}^{\prime \prime}$ into its tangential and normal components a_{T} and a_{N}, respectively.
ix. How to compute a_{T} and a_{N} and κ in the simple way described in section 2.4
x. How to compute the osculating plane and the osculating circle.
xi. The details of projectile motion under the action of gravity.
