MA 242.601 - Spring 2019

Department of Mathematics

North Carolina State University


 

MA 242 Day-by-day Schedule

Week of

Section

Topic

 

  1/07 – 1/11

1.1

Chapter 0: 

Chapter 1.1: Cartesian Coordinates:  In 2 and 3 dimensional space

1.2

Vectors in 2 and 3 Dimensions:

1.2

Continue study of vectors

 

1.3

The Angle Between Two Vectors:  The Dot Product

 

 

 

1/14 – 1/18

1.4     

The Cross Product:

 

1.5

Lines and Planes in 3-dimensional Space

More on equations of lines and planes

 

2.1

The Calculus of Vector-valued Functions:  Limits, derivatives and integrals

 

 

 

1/21

Monday

Holiday

 

 

  1/22 – 1/25

2.2

Parameterized Curves in Space:  Newton’s second law.  Begin free fall under gravity.  Projectile motion under gravity; The isotropic oscillator (Optional)

2.3

Fundamental Quantities Associated with a Curve: Tangent vectors, arc length and curvature

2.4

The Intrinsic Geometry of Curves in 3-Space; curvature and the osculating plane

 

 

 

1/28 – 2/1

2.4

More on the geometry of curves in space; the osculating circle, and the normal and tangential components of acceleration

 

3.1

Multivariable Functions:  Material up through level curves

 

 

Review for Test #1

February 1

Friday

TEST #1  (**********  3-day window:  1/31, 2/1, 2/4   *************)

 

 

 

 

  2/4 – 2/8

 

3.1

Multivariable Functions:  Material up through level curves

Level surfaces of functions of 3 variables.  Parametric surfaces.

3.2

Limits and Continuity:  Theorems on limits; Continuity;

3.3

Directional Derivatives: Partial derivatives;  higher derivatives;

 

 

 

 

 

 

  2/11 – 2/15

3.3

Geometrical interpretation of partial derivatives; Tangent plane to the graph of f(x,y)

3.4

Differentiability of multivariable functions:  Definition; Differentiability and continuity; Theorem 9 on characterizing differentiability.

 

3.5

The Directional Derivative and the Gradient:  Formula for the directional derivative in terms of the gradient.

What does the gradient vector say about a function?

 

 

 

 

 

  2/18 – 2/22

 

3.5

The Chain rules for multivariable functions

Tangent planes to graphs z = f(x,y);  The general chain rule

3.6

Optimization: local and global extreme values of f(x,y)

3.6

More on extreme values;

 

Review for Test #2

 

 

 

Monday, 2/25

Monday

TEST #2   (**********  3-day window:  2/22, 2/25, 2/26   *************)

 

  2/26 - 3/1

 

4.1

Double Integrals over a rectangle as a limit of Riemann sums

Fubini’s Theorem for double integrals over rectangles; iterated integrals

 

4.1

Double integrals over general regions

 

 

 

3/4 – 3/8

4.1

Reversing the order of integration

4.2

Applications of Double Integrals

4.3

Triple Integrals in Cartesian Coordinates: Over rectangular solid regions

 

 

 

   3/11 – 3/15

 

Spring Break

 

 

 

3/18 – 3/22

4.3

Triple integrals over z-simple regions

 

Triple integrals over x & y- simple regions; Applications of triple integrals

5.1

Double Integrals in Polar Coordinates: over polar rectangles

5.1

Double integrals in polar coordinates over more general regions

 

 

 

 

3/25 – 3/29

5.2

Triple integrals in cylindrical coordinates

5.3

Triple integrals in spherical coordinates                                                        

5.3

More on triple integrals in spherical coordinates

 

Review for test #3

 

 

 

4/1

Monday

TEST #3 (********** 3-day window:  3/29, 4/1, 4/2   *************)

 

 

4/2 – 4/5

6.1

Vector Fields

 

6.2

Line Integrals of functions: First briefly review parameterized curves from section 2.2 and formula #2.6 for ds/dt in section 2.3. 

6.3

Line integrals of vector fields:  The fundamental theorem for line integrals

6.3

Conservative vector fields and potential functions; Conservation of total energy

 

 

 

 

 

4/8 – 4/12

6.4

 Parametric Surfaces in Space: graphs, spheres and cylinders

 

Surface Integrals: Surface Area of a Parametric Surface

Tangent planes to parametric surfaces

6.5

Surface Integral of a Function

6.5

Surface Integral of a Vector Field

 

 

 

4/15

6.5

More on surface integrals of vector fields

4/16

 

Review for test #4

4/17

Wednesday

TEST #4 (********** 3-day window:  4/16, 4/17, 4/18   *************)

 

7.1

7.2

Integral Curves of Vector Fields

The Divergence of a Vector Field

4/19

Friday

Holiday

 

 

 

 

 

4/22 – 4/26

7.2

The Curl of a Vector Field:

7.3

Green’s Theorems:  for circulation and for flux

7.4, 7.5

Stokes’ Theorem, The Divergence Theorem

Last day of classes

 

Semester Summary

 

 

 

4/29

Monday

Day 1 of 4-day window for FINAL EXAM

4/30

Tuesday

Day 2 of 4-day window for FINAL EXAM

5/1

Wednesday

Day 3 of 4-day window for FINAL EXAM

5/2

Thursday

DELTA TESTING NOT AVAILABLE ON THURSDAY 5/2 for MA242.601

5/3

Friday

Day 4 of 4-day window for FINAL EXAM